
i
I

I

I

i
I

I

I

I

I

I

I

i

I

I

I

$OF"_tARE ENGiNEERiNG L_BORATORY SERIES

,.'_,_ _¢"._"r _ _ _ A _ I

_,_LL,._, _E_ S_FT"J_/_R_ 1ENGINEERING PAPERS: VOLUME V

NOVENBER i987

32_2-2 ":'C_ " E""_." C _-

Godr_arci Space F_.igP,t Center

I

i
I

!
;

I
ti
t
I

t
i
t
i
I
!
i

!
f-.

|

!
I
!

SOFTWARE ENGINEERING LABORATORY SERIES SEL-87-009

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME V

NOVEMBER 1987

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory (S_L) is an organization

sponsored by the National Aeronautics and Space Administra-

tion/Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in i977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (i) to understand the software

development process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply suc-

cessful development practices. The activities, findings,

and recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of

reports that includes this document. The papers contained

in this document appeared previously as indicated in each

section.

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

NASA/GSFC

Greenbelt, Maryland 20771

iii

! 0310

TABLE OF CONTENTS

Section 1 - Introduction

Section 2 - Software Measurement and Technology

i-I

"Tailoring the Software Process to Project Goals

and Environments," V. Basili and H. D. Rombach. . . 3-2

"T A M E: Tailoring an Ada Measurement Environ-

ment," V. Basili and H. D. Rombach 3-15

"T A M E: Integrating Measurement Into Software

Environments," V. Basili and H. D. Rombach 3-23

"A Meta Information Base for Software Engineer-

ing," L. Mark and H. D. Rombach 3-58

"Characterizing Resource Data: A Model for Logi-

cal Association of Software Data," D. R. Jeffery

and V. Basili 3-93

Section 4 - Ada Technology Studies 4-1

"Measuring Ada for Software Development in the

Software Engineering Laboratory (SEL)," F. McGarry

and W. Agresti 4-2

0310

v

Studies 2-1

"A Summary of Software Measurement Experiences

in the Software Engineering Laboratory," J. Valett

and F. McGarry 2-2

"Evaluating Software Engineering Technologies,"

D. Card, F. McGarry, and G. Page 2-11

"Resolving the Software Science Anomaly," D. Card

and W. Agresti 2-18

"A Controlled Experiment on the Impact of Soft-

ware Structure on Maintainability," H. D. Rombach . 2-25

"An Evaluation of Expert Systems for Software En-

gineering Management," C. Ramsey and V. Basili. . . 2-37

"Comparing the Effectiveness of Software Testing

Strategies," V. Basili and R. Selby 2-66

Section 3 - Measurement Environment Studies 3-1

TABLE OF CONTENTS (Cont'd)

Section 4 (Cont'd)

"General Object-Oriented Software Development:
" E. Seidewitz. . .Background and Experience, . . .

"Towards a General Object-Oriented Ada Lifecycle,"

M. Stark and E. Seidewitz

"A Structure Coverage Tool for Ada Software Sys-

tems," LWu, V. Basili, and K. Reed

"Lessons Learned in Use of Ada-Oriented Design

Methods," C. Brophy, W. Agresti, and V. Basili. . .

Standard Bibliography of SEL Literature

0310

vi

4-11

4-20

4-30

4-40

I

I
|
I

i
i

|
,I
i
I
i
I
I
I
i
I
!
i

I
i
i
i
i
I
I

!
I
I
I
I
I

i

!
i
I
I
I

SECTION 1 - INTRODUCTION

SECTION 1 - INTRODUCTION

This document is a collection of technical papers produced

by participants in the Software Engineering Laboratory (SEL)

during the period September i, 1986, through January i,

1988. The purpose of the document is to make available, in

one reference, some results of SEL research that originally

appeared in a number of different forums. This is the fifth

such volume of technical papers produced by the SEL. Al-

though these papers cover several topics related to software

engineering, they do not encompass the entire scope of SEL

activities and interests. Additional information about the

SEL and its research efforts may be obtained from the sources

listed in the bibliography at the end of this document.

For the convenience of this presentation, the sixteen papers

contained here are grouped into three major categories:

• Software Measurement and Technology Studies

• Measurement Environment Studies

• Ada Technology Studies

The first category presents experimental research and evalu-

ation of software measurement and technology; the second

presents studies on software environments pertaining to

measurement. The last category represents Ada technology

and includes research, development, and measurement studies.

The SEL is actively working to increase its understanding

and to improve the software development process at Goddard

Space Flight Center (GSFC). Future efforts will be docu-

mented in additional volumes of the Collected Software Engi-

neering Papers and other SEL publications.

0310

I-i

I
i
!

I
!

I
i

I

i

I
I
I,

!
i
I

I
I

SECTION 2 - SOFTWARE MEASUREMENT AND

TECHNOLOGY STUI_IES

SECTION 2 - SOFTWARE MEASUREMENT AND TECHNOLOGY STUDIES

I

!

I
The technical papers included in this section were origi-

nally prepared as indicated below.

• "A Summary of Software Measurement Experiences in

the Software Engineering Laboratory," J. Valett and

F. McGarry, Proceedings of the 21st Annual Hawaii

International Conference on System Sciences,

January 1988

• "Evaluating Software Engineering Technologies,"

D. Card, F. McGarry, and G. Page, IEEE Transactions

on Software Engineering, July 1987

• "Resolving the Software Science Anomaly," D. Card

and W. Agresti, The Journal of Systems and Soft-

ware, 1987

• "A Controlled Experiment on the Impact of Software

Structure on Maintainability," H. D. Rombach, IEEE

Transactions on Software Engineerinq, March 1987

• "An Evaluation of Expert Systems for Software En-

gineering Management," C. Ramsey and V. Basili,

TR-1708, University of Maryland, Technical Report,

September 1986

• "Comparing the Effectiveness of Software Testing

Strategies," V. Basili and R. Selby, IEEE Trans-

actions on Software Engineerin 9 (in press)

0310

2-1

I

!

I
I

!
I
I

I
I
,I
I
i

I
I
I
I

& _ OF sor21oJUl IgASORID4BIT I[ZPE]IZEICZS nl .rsm SOrZNIUIX l[IG211DDIZ_ LLIIOIUt.--O_

[

Jms D. vaJ_tt aad rrnnk [.

Ba_Lona/ _-rmmuttc: and Space _SmLu£sr_•t.ton

Goddard Space FIAqht Center

Greenbelt, MarTland 20771

xumsn_

• ho practice of measurinq soft.re is increasinql T

seen _J • v_luaJ:le tool iD _ o_erLtl da_eloL=meot

of hlqJa-qualAt7 sol.rare pro_acco. Softy•re meas-

urement attempts to nee known, quantifiable, ob-

jective and subjective measures to compare and

profile soft.are pro_ects and products. To com-

pute _._ese measu:es effec_vely, data r._at cha:ac-

terise rJse sol.re, re project and product are needed.

This pepur covers elL_icts Of dat• toiletries and

soft_m_• measurement a8 rJ_y have been applied by

one particular ozxJanAs•tion. _ Software EnqA-

neerinq Labor•tot7 (SEL). The measurement results

includm the ezl_rie_=es and lessons leax-ned

mhrouqh n_aerous ezl_rAmenco conducted by the SEL

on nea_ly 60 fliqUt dlmamAcs sofL_are projects.

Those ezperimeuts have sttmeptod to determine _he

effect of v_rAone sol--re development technolo-

gies on overall soft--are prelect quality and o•

specific measures s_ as productivity, reliabil-

ity, and ma£nta£nabilAt T.

T_e practice of measuri_q soft.re is increasl_ly

see• as • valuable tool An _ha overall develop•one

process of h_h-<lualA _ softy•re pro_ects. Soft-

v•ro meuurement attempts to use kaovn, q_umt£fi-

able, objective and s_bJoctlve measures Co

effectively compm:e and profile softwero projects

and products. ACCacl_aq _hesm quantifiable soft-

_•re measures to s_fic aspects of software

_roJects allmm for meui_qf,,1 anal1_is of _he

_uality of a sof_aro pro_ect. The 4_ta for r_ese

measures can be obtained An a variety of rays,

inclu_Llnq d_C• collection forms, automatic toilet*

_ion. and d_rec_ _terviews vir.h project meube_s.

As 4ace are collected and pro_ects are measured,

a, org_sation _roves its u=dersta=_LL_] of

softv•_e development pro<:ess vithin +.ts environ-

me•t, asd t]:lersforo the overs_,l.1 process _S im-

proved.

Cu=rently, some o=qaa_satious from industry, aca-

dma_a, and goverament ace measurJ_ r.heAr soft.are

d_v_lOlmm_t process. 1,2,3 This measurement _s

t_picslly Jne_Lfie4 bF _J_ azquneat _t_t an o_an-

/za_Lon amst uaderst_nd Its develolment charac_:or-

isr_cs before applyinq soma never technology.

Thus. CO determine r_e effect of nov cochnoloqies

on Chat orgamisatiou's 4_velol_ent process, CI_

effect mt be measurable aqainst an environmental

baseline. The nm_or _eterront Co incor_oraCinq a

measurmseut proqrea As cost. _f _ cost out-

_e£qhs rJae benefits, tba measurmmut process is

not vorCJ_ pursuAnq.

This pa_er describes one _ro•ch Co data collec-

tion and ozl_rL=eutation, ezplatas how _ tech-

niques were applied to one p•rt_cui•r production

envlromnt, and 4escrAbes _he pertAnent lessons

leer=ed from rJ_ts organization's ectm_pt to im-

prove its develolxnent process _rou_a measure-

ment. ThAn p_r does not &tte_t _o s_nmarize

_he results of _he tochnoloqAes studied durinq _he

period for which _ measurement proqram has
eziste4.

Soft.=era Rm_Inser_ L_borm_v (SI_|

For the _ast 12 Feers, r_e S_, ha8 dedicated

itself Co measurinq and understandinq software

development in one _arti¢_lar pro4uction environ-

mont. The SEL Is a cooperative effor_ between C_e

N•tional Aeronautics and Space Administration/

Godd_d Space F1iqhC Center (NAS_/GSFC), r_e Uni-

ve:sity of _a_land (Co•purer Science Depart=out),

and C_uter Sciences Corporation. It is fm_bKI

by ILt.5_Godd_d and is an integrLl p_t of the

Flight D_Ics Division st Goddsrd. The _els of

r.he SZL are CO understand _he softy•re development

process in _te GSFC onviromneut; to measure

effect of various methodologies, tool, and models

on _his process: and to identify and _hen apply

successful devolop,,,en_ practices. 4

SEL's study environment AS _he flight dlmamAcs

are• at _SJ_GSFC, _n£ch Ls resL_ns_ble for devel-

opAnq •edit-- and large-scale _round support soft-

ware systemm for spacecraft missies st_port.

Deta_Llod softtmre develo_emnt dot&, i_cl_Linq deco

on effort, chan_es, errors, computer utilisation,

softie size, and methodologies used, have been

collected $ on he•fly 6Q softvaru projects.

._nese medium-scale FroJects, developed mostly in

FOrfRAN, have ran_od frmn 3°000 CO 170,000 lines

of co4e, wi_h _ a_raqe about 60,000 lines. The

S _- has Chne had a ,,-;qus op_orcm_Cy to study and

a_ly different development metJ=odolo_ies co

produc_£OnoleV_l sof_m=e projects and _o deter-

nine _ir effects on rJae develOlXneut process.

Dutinq _hese years, _he SEL has acquA=od valuable

ezperience An _ho science of neacurinq softy•re

and has gained immeasurable benefit from applying

and assessin_ available software development tech-

nologies.

+

Proceedinqs of the 21st _nnual Hawaii International Conference on System Sciences, Janua_ 1988.

2-2

_am OoeraCion of the

SEL's approach to sCudyinq software tackle-

giee LS Co first define _ specific goals of a

pocenC4al s_udy of fore and then to derive sppro-

pria_.e clues_'.Aons and amCrics of inCeres_, from the

sac of go_s. 5 As teams are fo_d to develop

flight dynamics production software, _ey are

infor._d of the goals of "_ha study and of which

t_s of data will be collected during develop-

mont. If needed, _e development ream Is trained

£a a partAcular meChodoloqT ",.hat may be parr of

e study (e.g., Adam, or struo.ured dosage or

some dovelo_nC tool).

From rise start of pro_Jeot development, information

is provided (t/srouqb _ use of data collection

forms) by the developer and manager for recording
£n a cenCraJ, data base 7 of information. This

_c_led information includes effort data.

c/zanqe/orror data, development characteristics,

and environment data. The data are _allCy

assured _hroe tames before becoming am inherent

par1: of the data base, where it will be studied by

_e SZL team. The develo_nC team is respouible

for filling ouC forms _ responding to short ,

interviews w£_ _e study team. _l data entry,"

_alACy assurers, _d _alysAs is performed by

st_f personnel o_er _am the development team.

a pr.e goal of _e develo_ent team As to cam-

place _e mission support project An a timely,

cost-effective manner, not to s_udy _e tech-olo_.

T3mes of Data

_e data collected by _e SRL falls into _ree
basic classes, based on _w _0 data are collected:

• Forms

• InCoz_ziews/s_bJective information

• Auto_Ced methods

Form. Forms are used to collect data on

effort and resources, error _ chug character-

isCAcs, consonant characteristics, and project

estates. _e Personnel Resources Form (Fig-

ure 1) is used to collect effort data from each

project member weakly, detailinq r.he nmaber of

hours spent on different activities for each mem-

ber of the tams. The Change Report Form (Fig-

ure 2) provides data on component ee changes and

errors and Is used any t_no a modification £s made

to source code _t has tableted its ,mAt test-

ing. The Component InformatAon Fom (Figure 3)

provides derailed component data and As used by

pro_ecC members after a unAC has been coded and

..-;C Casted. Project estates consist of _-

ger's projections of phase dates, system size, and

effort (resources) requAred to buAld _e system.

A form is collected from project ms-eclats _aC
provides _hese dates and estimates after each

si_p_AfAcanC phase or mAlestoam.

*_la As • reqisCeced _rademark of the U.S. Govern-

men_, Ads Joint Program Office.

e*A com_nent Is defined as any separatelF compil-

-_le pia_e of source code.

2-3

Personnel Resources Form
PJI.LI=

SECTION A: Tot= Houri Spent on Prelect for the Week:

N I Oa_amm
_mmemm _mmemmmm
mmm

_mm

- _emmme_m _m

m_emm m_mm_m
elm

_lmm ma_m_m

?me_ ,i

_m

TI_mmmma _m mm_ wmm

_mm_qe mm_mmmem m
mmm_mmm_

T _mmmm_mm_mm

T mmm

0_m _mmmmmmmm __
_ ni_ nmiammm simms _ qmm m_

C_GS R_ FOe
_mm Omm

Wm

_mt_m m S/Im_WtammNt_m emmmmmm4m _
m_ mmmm_mm

_m_mal

__emh

Sedan g. ANC_mc_m

- a
w

oo.....

oo"__--.....
_m__ _e _ _

F_r_rm 2. _ i_tpo_ Form

I

t
i

I
I
,l

I
I

I
I

II
U
II
i

I
I
n

I

m_

oemm m emmmnom m_.

csmmV w wmm_.

Msm_ slamc

Plmm m 1me lUlmm IW m mm almmmt_w m
hw mdmm Nee

1 2 s 4 S

''__Idl_,um_,'4"1",OR_tNA,,'no_,'48_,FIM
am,qrmmw I

14mnlomm

_'TT

II tim mmlmml mm mmMall iwllmlmlllllm • ahWll immim, immm ImlmB lie
mat wmmwwm_mam: mmen-,--- w(tm
mll_ _m_l ImmNmm.

NEW sm_lammm_

gNie0 auudla ammwo_.

Wnm hal ,,,u_ _ _ ahmw m II s_u_P

_0mS_q,t

lCU,IQf mo (e.ql..ommmmlQ

AL_ flmmu_mm'mm)

g_mmdmm_m

g_m_m_Nmm awNmlm
nmmw_m _,m am.m

i
I_Jnnmmu_QI_-mm_hn_ _m.u_m,nm

-- ammmm

m4m_

I_ mmWml_m ItlmMm/l_ time lm_m m m eltlm m
(C_ma sa N mm_

m mlmmml _ Clml Im
_wmmum_mUmml _ m_mm mmmmlm

-- Clmmm -- l_lmmmmm

ULT_11

IP_ 3. C_mpmam_ OrigAu_r-ton roe

Intani,sn/S_ect.lm lafor, atlon. Iutervieml

and subJectAvm dace are collected boc/s durinq and

after project c_let£on co gain addL_tAon_X in-

sAqht Into project characteristics and Ante forms

Chat may h_ve been completed by proJec_ de,elopers

m_d a_ssaqers. The subjecCiv_ 4_c_ represessC de-

taAXed cba_actoristAcs of the development process

from r.he eyes of the sen_or software enqlnHr

studyAn_ C/_ project. Zn£ormation such as moChod-

elegy acCuaAly need, q_zallty of cools applied,

maaaqemmnt a_roac_, and level of disciplisse ad-

hered co As recorded.

cAon procedures clu_accerize project pareaec.rs

such as computer u_ilizattOno chauqe a_l _rom_

hAste=y, and product charecterAsCics. Ccm_pu_er

utilisation 4aCe are taken from wokly com_uCor

accouaclaq 4ace msd _aclu_ the amoua: of CI_ time

aud C/so ember of com_ster runs made ou a proj-

ect. Clum_o and q_ov_M AaCa a=e collected euco-

m_CAcl_.ly on • _mekly basis by Cools Chac moai_or

a project's couCrolle4 library to 4eCemAae r_e

somber of comFoamsCs ChaC have been chested, to_al

number of com_oNnC#, and number of lines Chac
exist ch_t _ek. Other cools are need aftor a

project As toe,laCed co cls_r_ccerize c/so sofCmsre

prOdUCt developed, kll source code is processed

Co com_u1=o c3se 4etaAled cheracceriscics of the

product includ_s_J SiZe c_tracCeristtcs An lines of

2-4

¢od_ per mod_L_e o. executable vm_t-s*_,S _-o_C_.t_._._: a

v_rsu_ commentary lAaes, number of each ty_e of

statement, and number and t_ of modu_.ee.

Havinq all Chase _aCa available allmm the SEL to

perform ma_y different studies and e=q_rimencs.

The ez_erimenCs can _e classified into Chrne

t_s: profile development, meCkodoloqff evalua-

Clons, and com_aratAve project ezTerimeuts.

To _etter uadersCmsd the enviro_nt, ACS process,

and the t_pical project, the SEL studies detaAZed

profile information reprmaentiaq both the process

sad the products of projects An this eaviro_nt.

Profiles are desiqned to obtain a better undmr-

standinq of how a._ orqanAsatAon does business.

They are not iaCeaded co evaluate whether C/_

characteristics are riqhc or vronq but to retort

ca C_e mmr_od of sofCvare development. C_saracter-

lsctcs sucls as effort disCribuCioss (be_ess da-

si_s° code, CaSte etc.) productAvi_yo typee of

errors coanoaly committed, and C_e mamsmr _a _Ach

code As developed mad _ over t_me ere typi-

cal Ace,as Chat are c_pcured,

The second t_ of esrper_nc is r.be mouurmuC

of mo_._odelc_Jios and choir effects on r.he develop-

meat process. TlsAs ty_e of ext_rlment compares

projects Chat are similar in coa_ple=Aty and size

of effort buc Chat _ave a_lied 4Afferent Cech-

alques Co the development p_ocess. This c_pe of

ez_eclaeu_ iS _Lqed CO u_erst_n4 _ treslds _t a

particular development Cech_Lque may have on proj-

ects vi'c.h2a _ env£rommn_.

The ChArd t_pe of ezper_ment As the 4_rect compar-

ison of C_m or more proJecce 4evelo_inq Co C/so

same requirements buc nein_j different methodolo-

gies. The value of r.bis t_e of ozperimont is

ability to directly compare the effect of the

mechodoloq_ on the seam project. Frequently,

Chess types of ez1_erimeuCs are coeducted on sm_11,

contrived pro_octe because the obvious prohibitive

factor £n _s type of study Ls cost. Several

such studies have, however, been conducted by the
SL_L.

Throuqhout the A2 years of _e S_,, n_roue tech-

ucloqtee _ve been studied and retorted on, pro-

vidinq extensive insl_ht Aaco the productiou of

software ia the SEL euvAro=steut. Derailed results

of _e stu_l£es are preseuted in • series of re-

ports a_l documents published by C/sm SEL.8-g,ZO, ll

Some results from all three Cymes of ezper_ments

are presented as szamples later in this paper.

The rest of C/_s paper focuses ou C_m mrperAences
and lessons learned from _ SEL's escCeus£ve d_._

collection and ez_erAmentation efforts. _z_mples

of the rosu2ts obtains4 from the various study

approaches are presented first. _ the lessons

Zee_aed from the det8 collection process itself

and the SEL's ez_eriences v_ch C/so cost a_4 _en-

oral overbend of the ez_er_mentatton process are

discuesod. Pin_lly, the ma_or Smi_s C/_ _se SEL

_as concluded are drivers for su_ortinq sofCvare
meaSm_emeut are summ_rised.

D_RXmJL'XS FItQ4 12 _ OF _MASmnDODrT

Since the inception of cl_ SEL in 1976, eztensiws

effort has been put forth in the measurement of

software development viC/Ltn CAm 14J_5_/GSFC environ-

mont. _-Ioarly 60 major projects have boon monk-

tared to varying levels of detail; experiments and

studies with all Chase projects have been con-

ducted over the lest decalOo

The collected data have become part of a ma_or

corporate memory, the S[L data bale, which cur-

tautly requires over 15 me<Jabytes of storaqe, kll

monitored projects have recorded effort/resource

data, and most have de_LLled records of chanqe and

error data as well.

The SEL hal used all 00 projects, representing

over 3 million lanes of code, to develop the pro-

flies of Ohm enviromnmnt and Co study general

trends in the characCerlscics of the software

process and product of _hat environment. In addi-

Clan, approximately 35 of _he projects have boon

(and still are) used in carrylnq out studios of

specific software development raechodologies. On

six to eight projects° comparative experiments

have been performed.

]:n total, over 150,000 forms have been collected

and recorded on the SEL data base, from which the

SEL has glemd vest amounts of information. From

_ho detailed studies performed by the SEL, some

key insights have been gained in the measurement

and oxper_ontatlon process.

8.

7.
6"

BY PROJECT s.

(ALL CHARGES) 4.3.

2"

1.

0

Examples of the throe t_pes of SEL experiments are

presented here to illustrate the t_pes of data
collected and the results obtained.

2_g_j__. The profile study attempts

to characterize an aspect of the development en-

vironment. One coxploted study shoved Chat indi-

vidual productivity varies siqn£ficantly'vi_hin

the SZL environment.12 By recordluq detailed

performance and offort data from over 150 iudiv-

1duals across 25 major projects, the SEL was able

to esClmato the productivity rates of Chose ind£-

vlduals. Although _here are obvious problems and

objections to usCnq l£an8 of code as a producClv-

icy measure, c.he SEL used it to aC least compute

trends in productivity. Figure 4 shows the com-

puted variations in productivity for r,ho particu-
lar projects studied. _t shows chat individual

variation is much greater than pro_act variation

in bach largo (over 20,000 lines of code) and

small projects. This simple productivity profile

thus verifies a suspected result: good people are

_he most important methodology. If it could be

determined why certain developers performed at •

much higher rate chart others, training programs

could be developed and staffing could be deter-

mined chat might bring out those characteristic4.

From a _asureeumnt perspective, level-of-effort

data and the amount of code produced (size data)

were the only items needed to produce this pro-

file. Such relatively high-level data are easily

collected and can offer a great deal of informa-

tion.

MIN AVG MAX

8,

7.

6-

5

4
3

2

1

0
MIN AVG

6.3

MAX
LARGE PROJECT

12 t 12-11 11 -
10 10 -

BY PERSON 87 7
6

(PROGRAMMER _ 5ONLY) !t 3241
0" _ 0

MIN AVG MAX

LARGE PROJECT

SMALL PROJECT

MIN AVG MAX
SMALL PROJECT

A LARGE PROJECT IS GREATER THAN 20K SOURCE lINES OF CODE (SLOC).

Flq_re 4. Produc_Lv4_y Var4n_40n Ln _am SRL (SLOC/Hour)

2-5

I
I

I

I

Fiqu_e 513 is another ezample of an environ-

manta- profile, s,t=ovinq' _ percentaqe of effort

by activity on. a typical SEL prQjeCt. _ i_por-
taut point here is Chat Ohm profile does not indi-

cate _tw_r Ohm SEL _evelo_mmnt profile is
or bad. only where effort is beA_ ezpeudmd. Be-

cause such a lov _rcent_ of effort is slxmt in
actually codinq, the SEL ha8 not concentrated its

efforts on i_sprovinq codinq activities buC has

iautesd concentrated on improvinc] more siq_Ltf£cant
actAvit£es such as desiq_sAng and tesCAnq. This
profile was created viCh effort data (by activity)

at i very b_q_ level, "..hat is, no compoaunt-l_l
effort data were used. Xn developinq profiles, it

should be remmRbmred Chat it is major trends Chat
are of Interest and chat Chose cn typically be

found viChout us£sW _zcepCAona21y detailed Artier-

I

I

l

e_er_ent used _ the S!3, AS the mor,_odoloqicaZ

ev_luatAOno am e,_a_ple of which was presen.ced aC
the Hawaii Xn.terauClona_ Conference on Syscm
Sciences in 1985.14 The m_pbasAs of the experi-

ment •ms on dmtomin_nq the effects of computer
resources and Cool usaqe on sofCvere productivity.
reliability, and mLtntLinabllity. Productivity As

definml as Ohm nmRbor of lanes of code produced
per scarf month, reliability As the number of

errors reported after un/t teetAnq per thousand
11nes of code, and maintainability is the avoraqe

ls_J_.b of CAme needed Co _ or correct the
softvore. The results showed chac an increase in

use and quality of sofCvare cools had a sAq-

aAficaat posAclve effect on chin productivity and

au_tnCa£n_bilACy of sofC_a_re projects but Chst C/_
q_aliCy of C/_ coa_uter environmnt had no meae_r-

id_le effect on a_y of the three meu_re8. A third

sn.r_risAnq result m chat. as chs number of tez_-

i=als per proqrmmmr increased, prodnc_viCy da-

creausd. Subjective _aCa were used An this analy-

sis, althoush more _m _ust the subjective _ata

from the SKi da_a base were /J_Cluded. The subjec-
tive dace An the data hose did not co_r -11 cl_

_reu need_l, so ad4£tio_l, azper£menC-spoCific

d_ta wre collnctmd lx)sC facto from projeot mmn_-
_rs. This ez_r_n_ showed c_t h_h-lev_l

trends In project data _ro very useful in _y-

I

!
2-6

sis a8 o_posed Co _etailed statistical _Laca, ___

relates back Co previous points Chac Coo such de-
ta_l c _,_ obscn.re _enoral resn.lts.

knoCher aureole of ezperimataCiou oa meChodoloqi-

cul efforts was _ application of Zndepmndent
validation and Verlficltion (IV;V) to _l_ree proj-
ects. 12 The IV&V ez_erimmnt compared _ effect

of a_lyiu_ XV&V tO throe larq_-scale (ov_r
100,000 liens of code) pro_ects, usAaq _ moss-

u_es of prodn.cCivlty, number of errors _ou_l early
An the project, oversutX reliad_llAty, and cost Co

correct errors, vlCls s_Ja_lar projects Chat dad noC
use IV&V. Figure _ shows the results of Ch_ ex-

per£ment. AAChouqh more errors wore found e_ly
An dmvolopmon.t usA_ r._s smthod, the other c/tree

measures show ch_t IV&V was not a psr_Lcularly
effective methodology An the S_L enviro_--,nt.

MeC/sodolo_icaA moasurmnonC is m_remmly valuable

co an orqm_IzacAon in evaAuaCi_ new tec/mAqums,

lven c/ e_zAscence of profiles u a auchan_m for
comparAson.

Cmma_a_4v_ Pro4amt: SCudimJ. The C/L_rd t_p_

of SEL er_rlment is a comi_clson of projects
developI_ from the same requAreamncs but usi_

differen.t auchodoloqieo. One study ChaC used C/L4.e
rescind coaqpnred different Cest_uq stretoqAes usiaq

smLll proq_m Chat _re seeded v£ch fnults.
Three tesr.inq stratoqies--structural, funcC_om_,

and cede read£nq--_re co_:_l Co _etecm£au C_elr

relecive a/_Allty and cosm Co IoceCo Clsm errors. Is

The ez_erimmt used professiosU_ proq=mrs in

the _ environment and compared C_m quaIAty of
these t_r_e _od_. The most promAau_ result
from this e_perAment m C_aC code read£nq proved

Co be the most effoctiv_ _em of teet_nq for
these study proqrams, regardless of the level of

szporionce of the proqrmr: the more e_periencod
developers umre, homever, even more adept at uinq
it. _ _porr_nt corollary Co Chts result _s thac

code read_q was also the leuc expensive tech-
nique for locaCinq errors, klChouqh code re_Ltn_

will never he Ch_ ouly testinq strategy used by an
orqncizatiOno r._s experiment has provl_k_d a

rationale for the SEL co stress cede read£nq u an

in, errant part of C/_ development process. For
this experiment, specific dete 4esiq=ed Co mr

the questions posed by r._e qoals of the experiment
were collected from C.he proqrmrs, klChouq_ the

typical date on effort tmre collected, store spe-
cific date _re required _:O assess _ aethodolo-

c_Les accurately.

A production-size e_r_nt currently hein_ COn-
ducted by Clue SEL involves Ch_ comparison of

FORTRAN and _ as dmv_lol_mnt lazsq_aa_s. In Chls
ez_er4mmnt, L_O inde_e_lent tom, o_ usi_q
FORTRAN and one usA=q Ads, are davelo_isw • major

mission sut_ort project for _SFC. This ty_e of
sofC_Lre project Is typAcal v/t_n _ S_r- envi-

ronment and qmnmrally re_resen_.s a_,_rozAmotely
50,000 lines of source co4e_ At is therefore a

valid test of C/so _ lanquaqes wlChA_ _ envi-

ronment. _tChou_a _his oz_JrLmont Is not c_lete,
many obse=vat£ons and resn.lts have ulready been
reported. 16,17 The major early results from ChAs

experiment sho_ _hat _he use of _d_ as a _e'.J_,_l_l-

oqy, rather than as s_ly another proqra_mAnq lau-

O
O
.J
(n

o 2.0 2.2

MIN AVG MAX N&V

COST INCREASED

3
x
LU ,
%,t
"" 2"
f/J
n. ,

o r?n.,
nC 1"
uJ

0 _-
lAIN AVG

m

3.3 ."1 --2.3 !i

IY&V

RELIABILITY NOT IMPROVED

• mO 74
mz

°°:Izm

,Z6 _ _ 76.3

'_"=' "1 _ ,4.5
==_ 641 sz7 /

S2! r----_. _ .
bIN AVG MAX N&Y

MORE ERRORS FOUND EARLY

1.2,
W

O
U

_ 0.8.
_o O.S. 1.101

i 1.028,.=,0.4. 1.00

t. 0.68 I0.2.
0.0 !

" MIN AVG MAX IV&V

ERROR CORRECTION COST
NOT DIFFERENT

rAqure 6. Result:,, of a Study on XV&V Ms_doloqy (Based on Three Ex1_ri.s_nts)

ruaqe, will cause sAqnifican changes in _he common

waterfall model of software development. Typical

management planning and _rackinq me,.hods used in

_he past will have to he adjusted significantly _o

develop projects in Ida properly. Again in _his

ex'perAmenC, a goal (evaluating Ida for the SEX, en-

vironment) was established and specific data were

collected to help reach _hat goal. Although this

tIrpe of ez_per_en= is e_ensive, it does offer _he

best grounds for evaluating a mer.hodolo_ wi_.hin an
envi r o_ment.

l_n_srlenees With Da_a Collection

From _.he many experiments performed by _he SEL,

i_ortanC lessons have been learned on _he impor-

tance of certain classes of data:

• Critical data

• Data useful to specific studies
• Data of little or no use

_. Some darn are critical to

any organisation and should _herefore always be

collected. These data are generally inexpensive

to collect and are truly necessar_ for an organi-

sation co understand its development process. The

first type of critical data is _.he information

provided on phase dates, es_ates of size and

effort, ._hodolopT, environment, and tools used.

Those projec_ characteristics, alon_ wir.h charac-

teristics describAnq _.he final software project,

are vital to characterizing a project and its

environment. A second C_e of critical dace is

resource da_a, which includes effort data and com-

puter utilisa_ion data. The SEL recently changed

its philosophy on the collection of effor_ data.

Because accurate effor_ data by software compo-

nent. which was formerly collected on _ost proj-

ects, is both difficul_ and expensive _o collect,

a high-level effor_ data form has been produced

(Figure 1). This form is now being used _o col-

lect effor_ data by activity for _he overall proj-

ec_ and effor_ data on specific areas of in_sree_

to curren_ s_udies. Computer u_ili=ation data are

relatively inexpensive _o collec_, coming directly

from computer accounting records, and c _- be

easily used to profile computer use within an en-

vironment. This profile can be extremely useful

in evaluating the progress of an ongoing develop-

ment project. A third _ype of critical da_a is a

record of changes and errors. _wain, counts of
chan_es and errors and the relative effor_ Co

in_lemen_ C..hem are needed for a complete profile

of _he developmen_ environment.

Da_a Useful _o Sne_iflc Studle_. Data tha_

are useful only _o specific s_udiss should be col-

lected on an as-needed basis_ these da_n are gen-

erally either somewba_ more expensive or less

critical to overall euviro_nt understanding.

One example of this class of da_a, effor_ da_a by

component° was used extensively on previous $EL

s_udles but is now only extracted from specific

projects with a defined s_udy need for the da_a.

Consonant information data is s_ill being col-

lec_sd by the SEL for ongoing studios thaC require

2-7

I

I
l

I

I
l
I

I
I

I

I
I

I
i
1
I

I

I
i

I

I
i

I
I

I
I
I
i

I

i
!

|
!

|
!

I
|
I

LC; hemmer, it is _ot as a rule critical for _ea-

ar_ pto_Ai@ at-_;es. C_taiied error data clas-

sifyinq types of errors may be /_portast to sam

sCudioo but Los not as critical as c_m b_q_-level

errOr data discussed above. If an orqan£zatAon

_anCs to evaluate t_e most frequent types of

errors committed, rJ2ese data rill be needed=

o_rvisa, At may not be worC_ C_ effort. Chan_

and 9ro_h history dace, _tChouq_ somewhat i_por-

Cant to _ envir, omnt p_ofile, are more o_pmn-

save Co collect: an orqanisation would Chermfore

have Co dmterm_um the relntAvm value of collectAnq

such daCao

I_0_._/m_./_LS. The ChArd class of data is

chat _a£ch the SEL has famed Co be leuC mfu£.

When the SZL first beqma coll_cinq data, AC

ucceuqpced Co q_nerulise the dACe collection to

gatJ_er _11 poss_bie data from a project. Nov,

viSAS r, he develol_mnt of the GEL1, OusstAono Metric

par_qa, 3 aside from C/am crltAca_ data. data

are collected on the basis of experimental qoals.

This t, hi_d clue consists of the qonaralAsed data

Chat were not used ezteuAv_ly Ln any of the

studies. One suc/s irma was the Run knalysAs Form,
which dat-_led i_or_atAon on each exac_tion Of a

computer run. These data were not effectively

used as either a profile or as data for studies .

and so ate no lonqmr collected. Originally, tJ_e

S_L _lso collactud over 250 subjective date iCm

from each development pro_ect. The attempt was Co

capture every minute detail portaln_nq to develop-

omnC met_odoloq_, such as _ level Co which

strv_tured prc_]rmminq and top-do_ dasAqm were

used, cha _,mlogment team's experience vlCh CI_

application, and CI_ lmml of _nt control

used on the proJaot, but the extreme dotall mm_be

nctunl avtluntAon of Cbu maC_,_toloqy is_oasi_le.

Because Chase 250 Areas proved to be much _oo de-

tniled CO use for may ranl studies, an effort m

made co reduce th_s subjective date to 30 to

35 items. _ S_ has just started _o collect

this type of data, and its usefulness reasons u_-
_eterm_nmd.

Cast: of Collect_leT Dare

ks noted previously, the major vnlid concern over

carrylnq out measurement efforts in any software

envAroment is cost. Xn organisation must be oon-

vincod C/sat the potential benefit from ch_ meas-

urement process exceeds the overhand Chat will be

incurred via r.he process itself. Experience from

the SZL has lad to greeter insight into the _n-

erul cost of carryinq out the measurement and

analysls activity. The overhead can be divided

into c/arms ma_or areas: data collection, process-

inq, and _LlynLS.

Q_%L-C_J_. Tom most visible overhead

to r.hm measurement proCaee is r/sat of collectis|q

C/us data, Obviously, requAri_j all davmlopers and

man_jers Co fill out fornm reflecclnq _lot_e_t

effort ect.tviCtes adds Co r.hm cost of the proj-

ect. • n an_ysis of C/_ add_tiomal cost on over

60 projects shows Chat the cost of collectinq data

to Ohm e_'Ceat performed by the SI_L (which includes

all Chr_ classes of data)'is approximately 2 Co

3 percent of _ total development cost.

2-8

Oriqina11y, the SEL had e_pecCed Chat the ov_rheS4

_ould run epproz.;_mately 8 to 10 percent. Early

projects, partially because of v_stnd data collec-

tion attempts, incurred an overhead of approxi-

mately S percent. For the last 3 to S years, r_a

_ener&l overhead cost of collectinq forms d_Ca has

conver_md co approx_ately 2 to 3 percent of the
buAld cost.

____. After forms hav_ bean com-

pleted or interviews vi_ developers have been

conducted° CJ_e available data must be quaIAty

checked, encored inCo some sCoraq_ me,Lure (darn

base), and archival. The SEL has permmont staff

C_at As responsible for C/Lie effort for all proj-

ects beinq stud_ed. By examin£nq the _otal ex-

penditure for d_sig_.ng and q_maratinq a data base

and tl_ess Iooklnq at the _scur_inq operational cost

of the daily data processinq relative to the cost

of the pro_ects beinq developed, _ SU, has esti-

mated the cost of data prooesslaq Co be S percent

of the total development effort be_nq supported.

This _s t.ha recurrinc] operational cost a_ter

initial data base desiqn and set_qp has been com-

pleted. This initial stsrtu_ cost could run aay-

vhore from 3 to 10 staff-years of effort.

_. The most visible cost _nc_r" -

red iS Chat of collectinq and procaseAnq data, but

the key Co Cha overall experiment omasurmmeuC

process is interpreting _ studies= the data

analysls. For the SEL° this effort has been the

major ezpendlture in the _asurement process.

Obviously, as organisation could expend u much

effort as &veilubla to aselyza dat& collacCad from

soft.are development pro_ects. The experiences of

ohm S_L, an organ_sntion Chat probably eZlpends

much more effort in ana_yzinq exTerimmnt data Chin

a c_pAcal organization would, are presented here.

The mlysis overhead includes data interpreta-

tion. e_r_nt planninq, tr_ninq, tuslyeis, _ld

report _ritinq. This effort costs, on the amsr-

aqe, 10 to 1S percent of cho total 4ev_lopsent

effort of Ohm project beinq a=alyzsd. T1L_S as-

pend£Cure has resulted in a major _proment Co

the undorstanding and overall process of develop*

in_ software in r_iS enviro_ent. Standard tech-

niques have been established, tools selected, and

Craininq needs decemined via ChAs anaAysis. The

cost bu been well worth it.

SI_N4U_ MID DZS_CI_SZQII

k_ _ortant point of this paper is that software

development can be measured and many valuable re-

sults can be produced via r.hm measurmnt process.

These results may come at seam expense, hut the

ust gain An process und_rsCand£nq and _m_rovemont

should be werr.h At. The most /mportant lesson the

SEL has learned from iCe years of maasurinq soft-

rare is Chat At is necessary to define measurement

goals before defininq the data needed, my _efin-

inq qonls and lattAnq Cham drive the data celiac-

end, an organization can save both tame and money

in its measurement efforts.

AiChouqh some organizations are measurinq Chair

sofCv_re process, more should unclerCake _A_is

effort. Mencuminq software need not be a tremen-

dously exl_ensivn task, and a small expense could

lead to large gains in bo_h quality and productiv-

ity. This _n_rovement of _he software development

process and product should be enough to encourage

organizations to begin at least a minimal amount

of data collection. The SEL has learned many good

reasons for an organization to start a measurement

program; _ha most important ones are discussed
below.

a Provides a Vital Manaaement Planning

Ald..By continually measuring software development

over a period of several _ears, an organisation

will develop a corporate memory, which is an ex-

tremely useful management aid. The historical

data can be used in predicting _ha future behavior

of projects, est_natlnq resources, and comparing

current and past project developments. The corpo-

rate memor 7 is also critically important in exper-

Imenting vi_h new technologies because it provides

a profile or baseline of the t!rpical project within

an environment. Thus, when a new technology is

applied to a project vi_.hin _he environment, it is

possible to determine _.ho cause/effect relation-

ship of _hat technology and _herefore its appli-

cability to _hat environment. Without accurate

historical data, an organisation can never deter-

mine if it is improving _he way it develops soft-

ware, regardless of how improving is defined.

_; _4 _;_;?_w __

• Sunoorts Process Undersesndina--Ey meas-

uring software effectively, an organisation can

better understand how it develops that software.

}4easurlnq software allows an organisation to

develop profiles of such items as types and causes

of errors, relative effort to make corrections,

effort distribution across _he life cycle, and

computer utilisation. By understanding the devel-

opemnt process, an organisation can identify

strengths and weaknesses in that process and in

_.ha product produced. Before an organisation can

attmnpt to improve some facet of its development

process, it must understand where _he existing

weaknesses lie, for example, the types of errors

that are most common. Areas of strseg_h can be

stressed on future projects, while weaknesses

might be addressed wi_.h new approaches. These new

approaches can be experimented wi_h on future

pro_ects to determine _heir effect based on _he

changes in _he pro_ect profile.

• Provides Rationale for Adov_-_ a,Standard

APProach--Measuring software via experimentation

allows for _e adoption of a standard approach to

developing software within an environment. If a

technology or practice can be shown to measurably

improve _he development process, this data pro-

vides significant rationale and support for adopt-

lnq that technology or practice as a standard

technique. Without showin_ _h_s effect within a

particular environment, _here is no ratlonale for

usin_ one particular set of techniques over any
o_r.

• Provides Discipline to Pro_ect DeveloD-

l&--The process of measurement (i.e., data col-

lection) adds a de facto discipline to the project

team b_ requiring members to realise the charac-

teristics of _he development process. The simple

act of filling out forms Chat characterise effort

2-9

or report an error gives _he developer a clearer

insight into _he project. This project discipline

in turn provides insight on software engineering

technolocFf to everyone.

For _hese reasons, collecting data and measuring

software are vital activities to any software

development organization. All of _he above points

lead to _ha conclusion that measuring software is

a key step in improving an organization's software

process and products.

The SEL has shown _hat software measurement can

become an integral part of an organisation's de-

velopment process. Without software measurement,

success or failure in developing software systems

may be random. To clearly understand _he software

development process, the strengths and weaknesses

of _hat process, and how to best improve _hat

process, software measurement is critical.

Clearly, by understanding an environment's pro-

file, improvements in software development can be

affected via the planned application and evalua-

tion of new development technologies.

I.

2.

3.

4.

5.

8.

7.

8.

9.

C. E. Walston and C. P. Felix, "A Me_hod of

Programming Measurement and Evaluation," IBM

Systems Journal, vol. 18, no. i, 1977

V. e. Basili and H. D. Eombach,
aratin_ Measurement Into Software Environ-

men_s, University of Maryland, Technical

Report TB-1764, 1987

B. Curtis, S. Sheppard, and P. Milliman,

"Third Time Charm: Stronger Prediction of

Programmer Performance by Software Complexity

Metrics," Procsedinas of the 4th _ntsrnationa]

Conference on Software Enoineer_n,, 1979

Software Engineering Laboratory, SEL-81-104,

The Software Enoineerina LaborstoEy ,

D. N. C_rd, F. E. McGarry, G. Page, et al.,

February 1982

Software Engineering Laboratory, SEL-81-101,

Guide to Data Collection, V. E. Church,

D. _. Card, and F. E. McGarry, et al., August
1982

V. R. Basili, Ouantitatlve Evaluation of So_-

wars Methodology, University of Maryland Tech-

nical Report TR-1519, 1985

Software Engineering Laboratory, SEL-81-102o

Software En_ineerina Laboratory (SEL), D_-

Base Or_ani_ation and User's Guide Revision],

P. LO and D. Wyokoff, July 1983

Software Engineering Laboratory, SEL-82-004,

Collected Software Enaineerina Pa_ers: VOI-

_, July 1982

Software Engineering Laboratory, SBL-83-003,

Colle_ted Software Enainserina Posers: Vol-

um_ IZ, Bovember 1983

I

I

t

I

I

I

I

I

i

I

I
I

I
I
I
I

l
I
I

l

I

I

i

I

I

I

I

i

i

l

I
I

I
I
I

I
I
I

I0.

11.

12.

13.

Softm_e ZnqinHrinq Laboratory, SEL-85-003,

Collected Software Enaineerina Porters: Vol-

ume I_, Jovember 1985

SofCvmre Enqinee_inqr Laboratory, SSL-86-004o

Collected Sof_are Enaineerina Paoers: Vol-

,me _, govember 1986

F. E. MCGaz_, "What Ea_,l We Learned in _he

Last: 6 TOaEsT", Procee4L{mas of _hm Seventh

Annual Saftware En_ineotin_ WoFkshoo,

SEL-82-O07, Software Enqineerinq Laboratory,
December 1982

F. E. McGarry, S. Volts, and J. D. Valett,

"Deter_in£nq Soft_arm Productivity Leveraqe
Factors," Proceedinas of _he Eleventh Annual

Software Enmineerina WorkahQ2, SEL-88-006,

Software Znqineerinq Labotar.ory, December 198e

2-10

14. F. E. McGazrT.. d. D. v-_!e____, _ D. 5a11,

"Measuzimq _he Zmpact of Computer Resource

Ouality on the Soft--are Developaent Process

and Product:," the Proceedlnas of the Hawaiian

_ntmrnatlonal Conference on Svstmm Sciences,

Januaz 7 1985

1S. SoftWare Enqineerinq Laborer.cry, SEL-85-001,

ComParison of Softwarm Verification Tech-

niaues, O. N. Card, R. W. Selma

F. E. McGarry, e_ el., April 1985

16. W. W. kgrtsCi, "SEI. ida Ezgetiaen_: Stat_s

and Design Experiences," _E_

Zleve1_h Annual Sol.mire Enmimmerina Workshon,

SEL-88-O06, Software Incjineozlssc] Laborttory,

December 1986

17. Softwmzo Enqineari_ Laboratory, 5EL-87-004,

Assessina the Ado DneiQI_ Process and Its

Imolementatlon: A Case Study. S. Godfrey and

C. RrOp_o eL el., July 1987

I

I
I

I

l
If
I
I

i

l
I
I

I

I
I
i

I
I

I

!

!

!

I

i
I

I
I

I
I
I

I
I

1
I
I
I

I

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13. NO. 7. JULY 1987

Evaluating Software Engineering Technologies

DAVID N. CARD, FRANK E. MC GARRY, AND GERALD T. PAGE

845

Abstruct--Many new software development practices, tools, and

techniques have been introduced in recent years. Few, however, have

been empirically evaluated. The objectives of this study were to mea-

sure technology use in a production environment, develop a statistical

model for evaluating the effectiveness of technologies, and evaluate the

effects of some specific technologies on productivity and reliability. A

carefully matched sample of 22 projects from the Software Engineer-

ing Laboratory database was studied using an analysis-of--covariance

procedure. Limited use of the technologies considered in the analysis

produced approximately a 30 percent increase in software reliability.

These technologies did not demonstrate any direct effect on develop-

ment productivity.

Index Terms--Modern programming practices, productivity, reli-

ability, software engineering, Software Engineering Laboratory, soft-

ware measurement, technology evaluation.

INTRODUCTION

HE basic goal of software engineering is to produce

the best possible software at the lowest possible cost.

Some researchers suggest that these are conflicting objec-

tives [l]. Others argue that quality software necessarily

costs less [2]. Many practices, tools, and techniques (col-

lectively referred to as technologies) have been developed

that purport to improve the software development process

in one or more ways. Some of these technologies have

become widely accepted in the software industry; few,

however, have been effectively evaluated experimentally

[3]. This is attributable in large part to an insufficient un-

derstanding of the software development process, a lack

of recognized standards for measurement, and the prohib-

itive cost of large-scale controlled experiments.

Nevertheless, the fact remains that the benefits of most

modem programming practices (MPP's) have not been

unequivocally demonstrated [4]. Although other research-

ers have studied the effects of individual MPP's on pro-

grammer productivity, most of these have employed bi-

variate correlation techniques [5], [6]. However, recent

studies [7], [g] indicate the programmer performance

plays the most important role in explaining variations in

productivity. Simple correlation approaches ignore this

factor. Recognizing the complexity and importance of

other software development influences (such as program-

mer performance), some researchers have combined

MPP's into a single factor in muitifactor models [6], [7].

Manuscript received October 31. 1984" revised September 30. 1985.

D. N. Card and G. T. Page are with Computer Sciences Corporation.

System Sciences Division. Silver Spring. MD 20910.

F. E. McGan'y is with the National Aeronautics and Space Administra-

tion. Goddard Space Flight Center. Greenbelt. MD 20771.

IEEE Log Number 871456|.

This study examines the effects of individual technol-

ogies (including MPP's) after the effects of nontechnol-

ogy (or nonmethodoiogy) factors have been removed by

sample selection and the choice of statistical technique. It

is not the intent of this paper to present another model for

predicting productivity or reliability. The specific objec-

tives of this study were to

• Measure--Technology use in a production environ-

ment.

u Develop--A statistical procedure for evaluating soft-

ware engineering technologies.

• Evaluate--The effects of some specific technologies

on productivity and reliability.

Because the use of statistics to analyze human activity

is always fraught with peril, the authors have adopted a

conservative approach that may not allow them to reach
definitive conclusions about the benefits of all the tech-

nologies studied, but that will make the conclusions they
do reach believable.

Sample Selection

The data analyzed in this study were collected by the

Software Engineering Laboratory (SELL Although a con-

trolled experiment was not performed for this study, a

carefully matched sample was selected for analysis from

the SEL database. The sample consisted of 22 scientific

software systems developed in Fortran on xhe same com-

puters to support spacecraft flight dynamics ground op-

erations. These specific systems were chosen to minimize

the potential effects of environmental variations on the

analysis results.

A recent study by Behrens [9] indicated that the devel-

opment computer system and programming language are

major determinants of productivity. Holding these factors

constant across the sample removes their effects from the

analysis. Another significant determinant cited by Beh-

tens was project size. Although this factor was not held

constant, it is confined to a relatively narrow range in the

sample studied.

Software Engineering Laboratory.

The Software Engineering Laboratory [10] is a research

project sponsored by the National Aeronautics and Space

Administration (NASA) Goddard Space Flight Center

(GSFC) and supported by Computer Sciences Corpora-

tion System Sciences Division and the University of

Maryland Department of Computer Sciences. This partic-

ular study is one part of a continuing program of technol-

ogy evaluation [11]. The SEL monitors software devel-

0098-5589187/0700-0845501.00 © 1987 IEEE

2-11

846
IEEE 1RANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13, NO. 7. JULY 1987

TABLE I
CHARACTERISTICS OF FLIGHT DYNAMICS PRO]ECTS

PROJECT
CHARACTERISTICS AVERAGE

DURATION (MONTHSt 16.6

EFFORT (STAFF-YEARSI 60

SIZE (KSLOC a)

DEVELOPED 67 0

DELIVERED 62.0

STAFF

AVERAGE (FTE b) 6 4

PEAK (FTE b) 100

INDIVIDUALS 14

APPLICATION EXPERIENCE

IYEARS)

MANAGERS 5.8

TECHNICAL STAFF 40

OVERALL EXPERIENCE

(YEARS)

MANAGERS 10.0 14 0

TECHNICAL STAFF 8.5 11 0

aKSLOC = THOUSANDS OF SOURCE LINES OF CODE.

bFTE = FULL-TIME EOUIVALENT

HIGH LOW

20 5 12 9

24 0 24

142 0 21 5
_59 0 32 8

11 0 _9

24 0 3.8

24 7

6.5 50

5.0 29

84 _-

70 _,

oped for spacecraft flight dynamics applications at GSFC:

During the past 8 years, the SEL has collected data from

more than 45 software development projects.

Most flight dynamics projects are developed on a group

of IBM mainframe computers using Fortran and assem-

bler programming languages. Specific software applica-

tions include attitude determination, attitude control, ma-

neuver planning, orbit adjustment, and general mission

analysis. The attitude systems, in particular, form a large

and homogenous group of software that has been studied

extensively. Table I summarizes some of the character-

istics of these production projects.

The data collected from these projects represent all as-

pects of development. The data categories, in part, in-
clude

• Project characteristics, i.e., size, dates, complexity,

personnel experience, effort, etc.

• Source code characteristics, i.e., size of compo-

nents, language, purpose, structure, complexity, etc.

• Change and error characteristics.

• Effort per week expended by each programmer on

each component.

• Computer utilization characteristics, i.e., purpose,
results, and duration of runs.

Data are collected both manually and automatically

during and after development. For example, errors de-

tected and hours charged are reported on forms by the

development team. Computer-use data are collected au-

tomatically as part of the accounting procedure. In addi-

tion, the completed software is processed through a source
analyzer to obtain detailed size and structure measures.

All of this information is stored in a computer database

accessible to SEL participants.

TECHNOLOGIES ASSESSED

Eight common technologies were selected for this

study, These technologies are listed in Table II. The ex-

TABLE II

LEVELS OF TECHNOLOGY USE

TECHNOLOGY INDEX SELa INTEROUARTILEB
USE (%) RANGE

QUALITY ASSURANCE c 49 , 26

TOOL USE c 49 20

DOCUMENTATION c 82 22

STRUCTURED CODE 70 15

CODE RE_O 20 55

TOP DOWN DEVELOPMENT 60 40

CHIEF PROGRAMMER 85 25

DESIGN SCHEDULE 32 9

aMEDIAN SCORE FOR TECHNOLOGY INDEX BASED ON

SAMPLE STUDIED

bDIFFERENCE BET_NEEN THE 25TH PERCENTILE AND THE 75TH

PERCENTILE.

CCOMPOSITE OF SEVERAL ITEMS.

tent of SEL use shown in the table is the median degree

of use (rigor of application) from the sample studied. The

SEL technology indices employed are defined as follows:

• Quality assurance--Percent of possible product and

process reviews (design walkthroughs, design reviews,

code walkthroughs, test reviews, independent verification

and validation, configuration management, document re-

views) that were actually used.

• Software tool use--Percent of software development

aids (requirements language, design language, structured

code precompiler, static analysis aids, on-line develop-

ment, remote job entry) available in this environment that

were actually used.

• Documentation--Percent of possible written records

of the development process and product (design descrip-

tions, test plans, user's guides, progress reports) that were

actually produced.

• Structured code--Percent of code developed using

the structured constructs (iteration, selection, and se-

quence).

• Code reading--Percent of developed code examined

by an experienced programmer other than the developer

to detect errors and inconsistencies before testing.

• Top-down development--Percent of modules de-

signed, coded, and tested according to hierarchical order

within the system.

• Chief programmer team'---Percent of code developed

by a team organized with a technical leader who delegates

programming assignments and reviews completed work.

• Design schedule--Relative weight of design in the

development process as measured by the percent of the

total development schedule spent in design.

Every system in the sample has a score for each tech-

nology index. Index scores are based on both subjective

and objective information. That is, scores were assigned

by a measurement group (not the developers) on the basis

of quantitative and qualitative observations made during

development and ratings performed immediately after the

completion of development. These scores are the per-

centage of actual use of a technology relative to its max-

2-12

I

I

I

I
I

I

I

1

I

I

I
I

I

l
I

I

I

I

I
I

i
I

I
I

I

I

i
I
I

I

i
I

I

I
I

,'ARD et ui EVALUATING SOFTWARE ENGINEERING TECHNOLOGIES 847

imum possible use. l'he exception is design schedule.

which is simply the percentage of the development sched-

ule spent in design. The individual items included in the

quality assurance, tools, and documentation indexes are

equally weighted. Of course, an argument could be made

for weighting these items differently (according to relative

importance), but even more arguments would anse over

how those unequal weights should be assigned. Table II

lists the (unweighted) median scores from the sample of"

22 projects.

The distributions of these scores did not correspond to

the normal distribution. Instead of using the actual scores

(percentages) for this analysis, the technology index

scores were used to define "'high" and "'low'" use groups

separated at the median scores (see Table II). Although

this causes some loss of information, the analysis is also

more robust as a result. (That is, the results are less sen-

sitive to outliers and influential points: common problems

in regression analysis of small samples. I Furthermore. it

is questionable whether degree of technology use can be

meaningfully measured to greater detail than this.

One assumption made in this analysis is that the effect

of any technology is incremental. That is, a high level of

use of a beneficial technology has more effect than a low

level of use. A technology that is of no value unless ap-

plied perfectly is probably of no value at all, because its

perfect application is unlikely. The objective of this study

was not, however, to define the marginal benefit of each

additional increment of technology, but only to determine

whether or not the technologies under study provided any

benefit at all. That is why the simple high/low technology

use classification is appropriate.

TECHNOLOGY EVALUATIONS

Evaluating the effect of a technology on an actual soft-

ware development project is not easy. In practice, several

technologies may be applied together. Other factors such

as programmer effectiveness and problem complexity also

influence project results. Boehm [7] pointed out the dif-

ficulty of distinguishing the effects of modern program-

ming practices from those of related factors. For the pup

poses of this study, two classes of factors were defined:

the technology factors measured by the technology in-

dexes already discussed and nontechnoiogy (or nonmeth-

odology) factors that are not directly controlled in the

flight dynamics environment.

Thus, the steps of this analysis were to identify the ma-

jor nontechnology factors and then to evaluate the effects

of technologies on the quality factors, productivity t and

reliability-', while compensating for the nontechnology

'Productivity is the number of developed noncomment lines of code di-

v=ded by the number of programmer hours expended to develop the sofl-

ware. iDevetobed noncomm¢nl lines of code is lhe number of new non-

comment lines plus 20 percent of reused noncomment lines.)

:Reliability is the reciprocal of the number of errors discovered dunng

development divided by the number of developed noncomroent lines of

code. Although this ts not a probability measure, it is assumed to be closely

related to the probability of operational failure.

FACTOR

TABLE Ill

EFFECTS OF ._()%TECH%OLOG'I F_.CT¢)RS

! _ } CCRRELATIONS

SAMPLE i STANDARD

MEANa i DEV/AT!ONa I pm b I . I! O DL}CTIVlTY , RELJABILITY _

PRODUCTIVITY

RELIABILITY

! PROGRAMMER

i EFFECTIVENESS

REQUIREMENTS
STABILITY

NUMBER OF SUB.
SYSTEMS

NUMBER OF DATA

SETS

NUMBER OF DATA

iTEMS

AVERAGE STAFF
LEVEL

AVERAGE MODULE
SiZE

COMPUTER uSE

MANAGEMENT

SUPPORT EFFORT

DATA COMPLEXITY

30

o 012

57

14

6

11

328

33

193

0008

!9

71

I0

OOO5

26

!8

5

7

353

24

45

OO06

5

49

I

051

os._

0 12

021

026

03O

0 10

0 37

0 E9e

047

007

051

068 e

04O

0 O3

0.17

021

009

-01E

0_9

0 _8

0 38d
I

aBASED ON SAMPLE)F 22 iNDEPENDENT SYSTEMS

bpRODUCTIVITY - DEVELOPED NONCOMMENT LINES OF CODE PROGRAMMER
HOURS

CRELIABILITY - RECIPROCAL _ERRORS DEVELOPED NONCOMMENT LINES OF

CODE)

dSECDND FACTOR SELECTED

eFIRST FACTOR SELECTED

g

factors. First. linear regression between the nontechnol-

ogy factors and productivity and reliability identified the

significant nontechnology factors (see Table III). Then.

an analysis of covariance (ANCOVA) [12l was performed

for each technology for each quality factor.

This analytic technique permits tests of significance to

be performed between the high and low technology groups

with respect to productivity and reliability after compen-

sating for specified nontechnology factors _covariates).

This study did not attempt to establish an incremental re-

lationship between technology use and the quality factors

such as would be provided by correlation/regression anal-

ysis. The Statistical Analysis System [131 was used to

perform the computations reported in this paper.

Nontechnology Factors

A wide range of nontechnology factors were considered

in this analysis. Table III shows their correlations with

productivity and reliability, as well as the mean and stan-

dard deviation from the sample of 22 systems. These fac-
tors are defined as toiiows:

• Programmer Effecdveness--A weighted measure of

the development team's general and application-specific

years of experience.

• Requirements Stabilin'--Number of approved re-

quirements changes divided by the number of subsystems.

• Number of Subsystems--Number of major functions

identified in the requirements and realized in the software.

• Number of Data Sets--Number of external files used

for input, output, or passing data.

2-13

848 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13. NO 7. JULY 1987

• Number of Data Items--Number of fields defined in

all files.

• Average StaffLevel--Full-time equivalent staff level

of development (programming) team.

• Average Module Size--Total lines of code in new

modules divided by the number of new modules.

* Computer Use--Number of hours of CPU plus I/O

time expended dLtnng development divided by the number

of developed noncomment lines of code.

• Management�Support Effort--Percent of additional

effort expended by managers and support personnel.

• Data Complexly--Number of data items divided by

the number of subsystems.

All of these factors have been suggested in the software

engineering literature to affect productivity and/or reli-

ability. It should be noted that none of the project size

measures (number of subsystems, number of data sets,

average staff level) showed a significant correlation with

productivity or reliability. This indicates that our sample
selection criteria did eliminate size as a factor in this

study. The two most highly correlated factors from Table

III were initially selected as covariates for productivity

and reliability.

Programmer effectiveness and computer use were se-

lected as covariates with productivity. The importance and

magnitude of variations in programmer performance are

well documented [2], [8] and easily understood. How-

ever, Table III also indicates that productivity correlates

negatively with computer use. In the environment stud-

ied, computer support principally consists of facilities for

source code entry, compile/link/load, testing, and data set

management. Apparently, less productive programmers

spend more time at the terminal involved in these activi-

ties. The clean-room approach advocated by Dyer and

Mills [14] may thus prove beneficial in this context. On

the other hand, a recent SEL study [15] and results ob-

tained by Boehm et al. [16] suggest that additional com-

puter support for design and management activities may

improve overall productivity.

Programmer effectiveness was also selected as a co-

variate with reliability. Because requirements stability was

correlated with programmer effectiveness, data complex-

ity was substituted as the second covariate for reliability.

This prevented collinearity in the model [17]. Data com-

plexity, as measured here, is largely the result of require-

ments and therefore not readily controlled as part of the

software development process.

Each technology was evaluated independently by in-

corporating it in a productivity and a reliability model

using the appropriate cov_triates. One potential confound-

ing effect recognized in an earlier SEL study [18] and by

Boehm [7] was the tendency to use.several technologies

together. This makes it difficult to isolate the effects of

one technology from another and poses the possibility that

there might be an interaction of technologies that this pro-
cedure could not detect.

Because the selected nontechnology (or nonmethodol-

ogy) factors were measured very accurately and exhibited

unimodal symmetric (nearly normal) distributions, the di-

chotomization process defined for the technology factors

was unnecessary here.

Productivi_. Results

The evaluation consisted of generating a set of models.

then fitting to them the data from the 22 systems described

earlier. For the productivity analyses, each model took

the ANCOVA form [10]:

where

P,_ = productivity of project i, j.

_x, = mean productivity of technology level i

where i = 1, low technology use

i = 2, high technology use.

3, _, = constants (weighting factors).

Xij = programmer effectiveness of project i, j.

Y,j = computer use of project i, j.

_,j = unique error tunexplained variation).

The ANCOVA procedure divides the variation in pro-

ductivity in the sample among the components of the

model. To the extent that variation in productivity can be

attributed to differences in levels of technology use, the

technology demonstrates a significant impact on produc-

tivity. More comprehensive models of the cumulative ef-

fects of technology use (based on more extensive assump-

tions) have been developed for cost estimation purposes

[7]. [19]. However, this model provides a simple mech-

anism for evaluating the effects of individual technolo-

gies.

Together, programmer effectiveness and computer use

accounted for 54 percent of the variation in productivity

before the effect of any technology was included in a

model. Table IV shows the additional variation accounted

for by each technology factor (explanatory contribution).

The table also lists the magnitude and significance of the

effect of each technology. Individually, none of the tech-

nologies studied in this analysis showed a significant

effect on productivity. However, this conclusion also

indicates that any other benefits derived from these tech-

nologies (e.g., lower maintenance costs) are not at the

expense of productivity.

Early suggestions were that the principal value of mod-

em programming practices is primarily in the area of

maintainability. Sheppard et al. [20] indicated that the ef-

fects of such technologies are more apparent with less ex-

perienced programmers than with experienced personnel

such as those studied by the SEL (see Table I). Mills [2]

proposed that productivity is a byproduct of reliability,

that is. a consequence of minimizing rework (errors). Ta-

ble III indicates that productivity and reliability are posi-

tively correlated.) It is therefore expected that differences

in software reliability would be easier to detect than dif-

ferences in software cost.

2-14

!

!

!

!

!

II

!

I

!

l

!

!

!

i

l

I

II

l

I

CARD et aL: EVALUATING SOFTWARE ENGINEERING TECHNOLOGIES 849

TABLEiV
SUMMARY OF PRODUCTIVITY ANALYSES

TECHNOLOGY

INDEX (EFFECT)

QUALITY 0.87

ASSURANCE

TOOL USE 0.7"/

DOCUMENTATION 0.38

STRUCTURED 0.82

COOE

TOP-DOWN 0.gs

DEVELOPMENT

CODE READ 0.45

CHIEF 0.16

PROGRAMMER

DESIGN 0.80 7

SCHEDULE

apROEABILITY THAT THE OBSERVED EFFECT IS DUE TO

CHANCE.

bIMPROVEMENT OF HIGH-USE GROUP RELATIVE TO LOW-USE

GROUP.

CpRODUCTIVITY VARIATION (PERCENT) EXPLAINED BY

TECHNOLOGY FACTOR.

SIGNIFICANCE PERCENT

OF EFFECT a IMPROVE-
ME_

-2

3

11

-2

-I

8

- 16

EXPLANATORY

CONTRIBUTION c

0

0

2

0

0

1

5

1

Reliability Results

The evaluation approach used here resulted in the gen-
eration of a class of ANCOVA models (one for each tech-
nology) of the following form:

R,s= 6, + x,j + "yz,j+

where

Rij = reliability of project i, j.
_i = mean reliability of technology level i

where i = 1, low technology use
i = 2, high technology use.

_/, 3' = constants (weighting factors).

Xiy = programmer effectiveness of project i, j.
Zq = data complexity of project i, j.
_q = unique error (unexplained variation).

Together, programmer effectiveness and data complex-
ity accounted for 63 percent of the variation in reliability
before the effect of any technology was included in a
model. Table V shows the additional variation accounted

for by each technology factor. The table also lists the
magnitude and significance of the effect of each technol-

ogy.
Three of the technologies studied in this analysis

showed significant effects on reliability: quality assur-
ance, documentation, and code reading. These three tech-
nologies are examples of the development team's con-
scious efforts to understand and verify the software
product. Approximately 73 percent of the variation in re-
liability can be exp!ained by this model. Importantly, im-
provements in reliability were obtained without any ap-
parent effect on productivity (see Table IV). That is, no
significant change in productivity due to the use of these
technologies was noted. This implies that skimping on

TABLEv
SUMMARY OF RELIABILITY ANALYSES

TECHNOLOGY SIGNIFICANCE

INDEX (EFFECT) OF EFFECT a

QUALITY 0.O_ I

ASSURANCE

TOOL USE 0.78

DOCUMENTATION 0.04 d

STRUCTURED 0.75

CODE

TOP-DOWN 0.67

DEVELOPMENT

CODE READ 0.O2 d

CHIEF 0.SE

PROGRAMMER

DESIGN 0.9(I

SCHEDULE

PERCENT
IMPROVE- EXPLANATORY

MENTb CONTRIBUTIONC

29 10

3 I

27 8

3 1

E I

29 10

8 I

-1 0

aPROEAEILITY THAT THE OBSERVED EFFECT IS DUE TO

CHANCE.

blMPROVEMENT OF HIGH-USE GROUP RELATIVE TO LOW-USE

GROUP.

CRELIAEIUT'Y VARIATION (PERCENT) EXPLAINED BY

TECHNOLOGY FACTOR.

dpROEABlUTY THAT THIS EFFECT IS DUE TO CHANCE IS

LESS THAN § PERCENT.

these activities will not produce any cost savings for the
developer.

SUMMARY

The analysis results presented here lead to specific as
well as general conclusions. For the most part, these con-
clusions arc consistent with, although not fully supportive
of, similar work by other researchers and assumptions
commonly accepted in the software engineering commu-
nity.

Conclusions

The effectivenessofany technologyand theimportance
of specificnontechnologyfactorsdepend to some extent
on the structureofthe localenvironmentand the nature

of the softwareapplication.The resultsof thisanalysis

providethefollowingspecificsuggestionsfortheconduct

of softwaredevelopmentprojects:

• Use experienced,capablepersonnel.They area ma-

jorfactorinproductivityand reliability.

• Develop softwareas completelyas possiblebefore
testing.Intensivecomputer use is associatedwith low

productivity.

• Read allcode developed. Code readingimproves

softwarereliabilityatlittleorno netcost.
• Effectivelydocument each phase of development.

Documentation improves softwarereliabilityatlittleor
no llet cost.

• Conduct regular quality assurance reviews. These re-
views improve software reliability at little or no net cost.

The most important lesson is that developers must be
capable and must consciously seek quality. These conclu-
sions will be fed back into the management of subsequent

2-15

•850 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING• VOL. SE-13. NO. 7, JULY 1987

software development projects at GSFC. Some more gen-

eral results of this study are as follows:

• Technology use can be measured and evaluated in a

production environment. Even a simple high/low rating

provides valuable information.

• A statistical model that explains much of the varia-

tion in productivity and reliability was developed for tech-

nology evaluation.

• Even limiied use of the technologies studied can pro-

duce up to a 30 percent improvement in reliability.

Discussion

Although the only improvements identified in this study

were in the area of reliability, a corresponding decrease
in maintenance cost should also be realized because of the

smaller number of errors needing correction. Table III in-

dicated that productivity and reliability are positively cor-

related. Futhermore, productivity improvements (which

were not detected by this study) may occur for other rea-

sons:

• A very rigorous application of these technologies
might show some benefit in terms of productivity, al-

though this seems doubtful at present.

• There may be a beneficial interaction when several

technologies are applied together. Earlier SEL research

[8], [19] suggested that this occurs. (Thus, the proper es-

timation form of the relationship among the terms in a

productivity model may be multiplicative, as proposed by

Boehm [7].)

• Other, not-immediate benefits might accrue. For ex-
ample, increased software reusability would be a major

benefit to subsequent projects.

• The efforts of technology use may be different in

other environments or for other software application types.

These results do not indicate, however, that the soft-

ware practitioner should not expect any dramatic increase

in development productivity as a result of applying the

technologies considered in this study. Brown [21] sug-

gests that any methodology will substantially help an or-

ganization in total disarray; otherwise, gains will be small.

Few organizations report more than a 10 percent increase

in productivity attributable to the use of MPP's [22]. Even

if these technologies do improve productivity, that effect

may be masked by other factors. Boehm [7] rates the com-

bined effects of MPP's as only the seventh most important

factor in productivity. Vosburgh et al. [6] reports that the

programming environment, computer, and all MPP's to-

gether account for only 24 percent of the variation in pro-

ductivity.

This explains some of the practitioner's dissatisfaction

with software engineering technology [23]. Because the

typical practitioner has fewer data and analysis resources

available than the SEL has, productivity improvements

may remain largely invisible to him, too! On the other

hand, this study indicates that reliability improvements

stand out when the appropriate data are available.

Of course, large productivity improvements may be

identified when other potentially important technologies

are evaluated. A major reason for the slow progress to

date of technology evaluation is the lack of reliable data
on which to base such evaluations. More data collection

and technology evaluation efforts are needed to establish

a sufficient empirical basis for the formulation of software

development standards and the selection of appropriate

technologies. Church et al. [24] provide some detailed

suggestions for data collection.

ACKNOWLEDGMENT

The authors would like to thank V. Basili, B. Curtis,

and M. Piett for their comments on an earlier version of

this paper.

REFERENCES

[1] J. A. McCall. P. K. Richards, and G. F. Waiters, "Factors in soft-

ware quality, vol. I," Rome Air Development Center, Rep. RADC-

TR-77-369, Nov. 1977.

12] H. D. Mills, "'Software productivity in the enterprise," in Software

Productivity. New York: Little, Brown, 1983, pp. 265-270.

[3] B. A. Shell, "'The psychological study of programming." ACM Corn-

put. Surveys. vol. 13, no. 1, pp. 101-120. Mar 1981.

[4] 1. Vessey and R. Weber, "'Research on structured programming: An

empiricist's evaluation," IEEE Tra,s. Software Eng.. rot. SE-10,

pp. 397-407. July 1984.

[5] C. E. Walston and C. P. Felix, "A method of programming mea-

surement and estimation," IBM Syst. J,, voh 16, no. l, pp. 54-73.

Jan. 1977.

[61 J. Vosburgh, B. Curtis, R. Wolvenon, et al., "'Productivity factors

and programming environments," in Proc. Seventh Int. Conf Soft-

ware Eng.. Jan. 1984, pp. 143-152.

17] B. W. Boehm. Software Engineering Economics. Englewood Cliffs,

NJ: Prentice-Hall, 1981, pp. 453-456.

[81 F. E. McGarry, "'Measuring software development technology," in

Proc. Seventh Annu. Software Eng. Workshop, Software Eng. Lab.,

Dec. 1982.

[91 C. A. Behrens, "Measuring the productivity of computer systems de-

velopment activities with function points," IEEE Trans. Software

Eng., voh SE-9, pp. 648-652, Nov. 1983.

[10] D. N. Card, F. E. McGarry, G. T. Page. et al.. "'The Software En-

gineering Laboratory," Software Eng. Lab.. Re,p. SEL-81-104, Feb.

1982.

[11] D. N. Card, Q. L. Jordan. and F. E. McGarry, Annotated Bibliog-

raphy of Software Engineering Laborato_' Literature, Software Eng•

Lab.. Rep. SEL-82-306. Nov. 1985.

[12} O. J. Dunn and V. A. Clark, Applied Statistics: Analysis of Variance

and Regression. New York: Wiley. 1974, pp. 307-332.

[13] J. T. Helwig and K. A. Council, Statistical Analysis System User's

Guide, SAS Inst., Dec. 1979.

[14] M. Dyer and H. D. Mills, "Cleanroom software development." in

Proc. Sixth Annu. Software Eng. Workshop, Software Eng. Lab., Dec.

1981.

115] K. Koemer. R. Mital. D. N. Card. and A. Malone, "'An evaluation

of programmer/analyst workstations," in Proc. Ninth Annu. Software

Eng. Workshop. Software Eng. Lab., Nov. 1984.

116] B. W. Boehm, M. H. Penedo, E. D. Stuckle. et al., "A software

development environment for improving productivity." Computer,

vol. 17, pp. 30-42, June 1984.

[17] E. R. Mansfield and B. P. Helms, "'Detecting multicollinearity,'"

Amer. Statist., vol. 36, no. 3, pp. 158-160. Aug. 1982.

[18] D. N. Card, "Identification and evaluation of software measures,'"

in Proc. Sixth Annu. Software Eng. Workshop, Software Eng. Lab.,

Dec. 1981.

[191 J. W. Bailey and V. R. Basili, "'A meta-model for software devel-

opment resource expenditures," in Proc. Fifth Int. Conf. Software

Eng. Washington, DC: Computer Society Press, 1981, pp. 107-116.

I20] S. B. Sheppard, B. Curtis. P. Milliman, and T. Love, "'Modem cod-

ing practices and programmer performance," Computer. voh 12, no.

12, pp. 41-49. Dec. 1979.

[21] P. J. Brown, "'Why does software die?" in Life Cycle Manage-

ment. London: Pergamon lnfotech, 1980.

2-16

I
I

I
I
I

I
I
I

I
I

I
I

I
I
I

I
I

I
I

i

i

I

!

i

I

I

I

I

I

I

I

I

I

I

I

I

I

I

CARD et al.. EVALUATING SOFTWARE ENGINEERING TECHNOLOGIES

[22] T. C. Jones, "'The limits to programming productivity." in Proc,

GUIDE and SHARE Application Development Syrup., 1979.

[23] J. Beeler, "Programmer productivity: Never have so many done so

little for so much," Computerworld, pp. 40-46. Dec, 30. 1985.

[24] V. E. Church. D. N. Card, F. E. McGarry. et al., "'Guide to data

collection," Software Eng. Lab., Rep. SEL-81-101, Aug. 1982.

David N. Card received the Bachelor of Science

degree in interdisciplinary studies from the Amer-

ican University, Washington, DC, in 1975, then

performed additional graduate study in _tpplied

statistics.

Since 1979, he has been a memher of the Com-

puter Sciences Corporation team supporting the

Software Engineering Laboratory (SEL). His areas

of activity in the SEL include software measitm-merit, technology evaluation, cost estimation, and

standards development.
Mr. Card is a member of the Association for Computing Machinery, the

American Statistical Association. and the IEEE Computer Society.

Frank E. McGm'ry received the B.S. degree in

applied mathematics from LaSall¢ College, Phil-

adelphia. PA, in 1963.
He is Head of the Systems Development Bnmch

at NASA's Goddard Space Flight Center. This

branch is responsible for the development of all

flight dynamics support systems requir_l in sup-

port of Goddard space missions. He has been at

Goddard his entire 19-year professional career.

holding various positions related to software and

systems development as well as software engi-

851

neering,research. He directs the efforts of the Software Engineering Lab-

oratory (SELL in which NASA/GSFC, the University of Maryland, and

Computer Sciences Corporation participate. The SEL performs studies and

conducts experiments on approaches to developing n_,dium-sized software

systems. It has provided a basis for the selection and adoption of meth-

odologies, models, and tools for software development within NASA. One
of his main interests has been in the development and assessment of mea-

sures for software development.

Mr. McGarry is a member of the Association for Computing Machinery,
American Institute of Aeronautics and Astronautics. and the IEEE Corn-

peter Society. He is on the Executive Board of the IEEE Technical Com-

mittee on Software Engineering.

Gerald T. Page received the B.S. degree in

___l chemistry from LaSalle College. Philadelphia.

PA, in 1967 and the PhD. degree in theoretical

physical chemistry from Villauova University,

Villanova, PA, in 1973.

Since joining Computer Sciences Corporation

(CSC) in 1973, he has directed requirements def-

inition, analytical studies, software development,

and operations for flight dynamics support of un-
: manned satellites and shuttle-attached payloads.

with emphasis on directing and managing the de-

velopment of ground-based software systems for attitude and orbit deter-
mination and control. Since 1977, he has directed CSC's support of Gnd-

dard Space Flight Center's Software Engineering Laboratory.

Dr. Page is a member of the American Chemical Society.

2-17

Resolving the Software Science Anomaly

D. N. Card and W. W. Agresti
Computer Sciences Corporation, Silver Spring, ,_{_ryland

The theory of software science oroooeecl by Halsteecl
appears to provide a comprertensive model of the
program construction process. Althougrt software sci-
ence has been wiclely cnticize<l on tl_eoreticai grouncls,
its measures continue to be use(l because of apparently
strong emoincai support. This study reexamined one
basic relationsnio 0ropose(l by the tl_eory:, tl_at between
esUmatea and actual 0rogram lengtl_. The results st_ow
tl_at the aoDarent agreement between these quantities
is a matrlematic artifact. Analyses of botl_ Halstead's
own data and a'notl_er larger dataset confirm this
conclusion. Software science I_as neither a firm tl_eereti-
caJ nor emoincal foundation.

INTRCOUCTION

Soft'ware science Ill is one of the most comprehensive

numerical models of programs and the process of

program construction. Coulter [2] sees an anomaly in

software science because it hasstrong empirical support.

but its assumptions are incorrect applications of cogni-
tive psychology. Researchers, however, continue to use

software science measures and to incorporate them in

software measurement products sold to software devel-

opment practmoners. Consequendy, the resolution of

this anoma/y at the interface or" theory, and practlce

should be a high pnorxty among software engineers.

Most of the empxrtcai support for software science is

based on analyses of the relationship between estimated

and actual length. Researchers frequently report correla-

tions of 0.95 or higher between these quantities [3].

Correiations of this magnitude are, however, nearly
unprecedented in studies of other human activities.

The purpose of this study was to reexamine the

fundamental relationship in software science: that be-

tween the estlmated and actual program length. Hal-
stead's own data [[] were reanalyzed and compared with

a larger sample from the Software Engineering Labora-

tory (SEL) database [4}. The SEL is a research project

Addre_3 corresoondence to D, N. Curd, Computer Sciences

Coroorntlon, 8?28 Coleswlle Rood, Silver SOtmg. MD 20910.

Joun_d of Systems and Soh_am 7. _9-]3 (19871

,_ 1987 Elsevier 5cm_ce _blishln s Co.. Inc.. 19B?

sponsored by the National Aeronautics and Space

Administration/Goddard Space Right Center and sup=

ported by Computer Sciences Corporauon and the

Universityof Maryland. Ithas collectedda_ from more

than 45 production software projects. This study was

undertaken as pan of a larger SEL investigationof
software measures [5].

MATHEMATICAL {DEPENDENCE

The high correlations between estimated and actual

program length ate a consequence of one being mathe-
matically dependent on the other. This can be shown

easily. Halstead [I] proposed that the actual length of a

program can be estimated with the following equation:

,'_= n,logzn,÷ n_.lOgzn7 (l)

where ._I = estimatedprogram length, n, = number of

unique operators, and n2 = number of unique operands.
The Iogz function is a consequence of Halstead's

model of how programmers select and combine opera-
tors and opcrands, Researchers attempting to validate

software science have found high correlations between

the actual length and this length estimate. These correla-

tions cannot, however, be accepted at face value,

Consider thls representation of the actual length:

N = N, - N: (2)

where N = actual program length, N_ = total number

of operators, and N_ = total number of operands.

For any given program, values A and B can be found

so that the total number of operators and operands can be

expressed as _nctions of the number of umque operators

and operands:

N)=n)A (3)

N., = n,B (4)

where A and B are repetition coefficients specific to this

program. Substituting Equations (3) and (4) into Eqtm=

tion (2) produces

N = niA 4-nzB (5)

Z9

0164-1ZIZ/87/S3.50

2-18

I

i

!
I

I

I
I

I
I

I
I

I

I
I
I

I
I
I

I

30

Companng Equations _1) and ¢51 shows that N and

are both ,ncreasing funcuons of n, and n.,. Because the

coefficients A. B. log:n_, and logan: are all always

positive, a positive correlation must exist between N
and l_l. An increase in vocabulary (nt + n2) also.

increases program length CN). Correlation is a measure

of dependence, but N and N are dependent by definition;

naturally the correlationcoefficientsare high. Come-

quendy, the usual inr_on of the c_iem

coefficientdoes not apply inthiscase[6].Furthermore,

tests of significance cannot be defined without first

d_ermining the intrinsiccon'elationl_twe_m N and n =

nl + n2.

The correctway to testthe softwgun_scieneetheoryis

to determine whether log2nl and lognnz predict the

repetitionfactors,A and B, respectively.That is,do the

Io_ mrms add any additionalinf_on about N thatis

not alreadycontainedin nt and n2. An examination of

Halstead'sdata and another largerdatabase shows that

they do not.

Haistead's Data

Halstead provides values of n,, n2, and N for 20

programs m Table 5.1 (page 29) of his book [l]. Table

1 shows some smnmary statistics calculated from I-hd-
stead's data. The table indicates that the software science

factor logan1 consistendy underesumates the n_ repeti-

tion factor (A), whereas log2n 2 consistently overesti-
mares the n2 r_petition factor (B). It is fortuitous that. to

some extent, these differences cornl_nsate for each

other.

The vocabulary (n = n, -4- n2) is about as good a

predictor of actual length (N) as the software science
estimator (I_) for these data. Both vocabulary and the

lengthestimate (lq) show a 0.99 correlation with actual

length (N). (Correlation coefficients are used for com-

parison with other literature.) That is. a single constant

does as good a job of predicting the numeer of

repetitions of nl and n: in a program as the log2n, and

log2nz coefficients proposed by Halstead. Ockham [7]

suggested that the simpler model should be preferred m
such cases.

Tsbie 1. Summary of Hulslud's Data

Memm'e Mean Minm'utm Mummm

n, 2.0 9.0 82.0
Iolha, 4.2 3.2 64

A 9.0 2.6 28.2

nz 75.6 8.0 _.33.0

Io_ 4.6 2.4 8.8
B 3.6 2.4 5.4

D N. Card and W W. Agresti

Table 2. SEL Data Summary.*

Standard

Mtmsure Mean Devtaoon

Executable statements 65 68

Unique operators ,n,) 18 8

Unu]tte operan_ in2j 47 37

Vocatmmry m) 65 44

Actual prognun length fN) 430 478

Es_mamcl _ length (N) 370 315

* Ba_l on I ItJOnt,wly altveto_ FOIITRAN mariuS.

SEL Data

A sample of ! 193 newly developed FORTRAN modul_

was selected from the SEL _ for this study. Table
2 summarizes some of the relevantmeasures. These

programs are substantiallylargerthanthoserepresented

in the Halstead sample. However, the correlation results

from the SEL data (reported m Table 3) still support the

previons conclusion: The soflware science model does

not provide any additional information useful for pre-
dicting program length.

Table 3 demomtrates the levelof empiricalsupport

obtained when the correct pairs of numbers are correl-

ated. Although logan, and Iog,2_ show slight correlations
with the repetitionfactors A and B, their net contribution

(relative to n alone) as prectictors of N is effectively
zero. The correlations of 1_ and n with N are about

equal. A comparison of Figures 1 and 2 provides a more

graphic demonstration of this. Figure 1 plots the actual

program length (N) against the software science estimate

(lq). In Figure 2. a simple count of unique symbols, or

vocabulary(n = n_ ÷ n:), produces thesame relation-

ship.

An examination of the residuals (difference between

the actual and predicted values) for the HaJstead length

esumator sfiows that it consistendy underestimams for

large modules (Figure 3). The discrepancy between the

means of N and lq in Table 2 supportsthiscontention.

Other researchersalsohave notedthisphenomenon [8].

Table 3. SEL Correlation Results

Con_hmee Co_l_..__oa

Ptir Coeffi¢iem"

A, Iog2n, 0.25

B. lol_n2 0.40

l_. N 0.85,
n.N 0.8_t

• B_umdem 1193 newly _,veio_d FORTRAN n,_e_.

¢ Corre,lai_ varud_ ck_en_tm_ by defimuea.

2-19

Resolving the Software Sc:ence Anomaly 31

uLi
Im
<

g_
ug

<
u.I

<
=

)111,, el, t, o e _) e o e+) e o e o) e e,_l e ° 16eee o@s Q oQ_° e I,_. e. ot'e, eel) e e e@)e)_C'e oi e¢' e

e •

2ago _' v 4,

,,.. , f !
: , , , J" :

• • o •

• 1 t 2 1, V "
• I t t / _ •
• 1 i 1 I /t! I •
•) ! / ! 1 .

1060. i li ?2 _. ly 4.
' . 12 I t t2_ /¢t 1 •

• t 21_ 11211_1f i
• 11t2]24111 2,,I"tl i
• 122211J22t_ 21 11 1

.. It 244226 2_11 I ILl) i •
. 1227S962_112 It ! 1) •
. i ¢2S64_,_1 t 22 I)
• 7376a73>_1$.0241 I I_ I

• 1_IkT 7J l
./_l_aT] t

•T3 3 • _1
0 Xu3 *

o 4_• o qb • 4pi • • o qb• O ! oSmo • • o 400 e o •_eq) • • eSJe • • eSu, e o O o4_0 o • • _• • ° o_o e e o_e • e o_e o 0 _ _0 t e •_o _J

300. _0. 1500 7.100 _7_ 3:300

ACTUAL LENGTH

The Halstead length estimator can _ modified to

center the residuals around zero by substituting Vn_ for

logzn).Land V_,. for logzn,. (Figure a,). For small values of

n. _n and Iogzn behave similarly. Unfortunately, the

accuracy of the estimatordoes not improve. Thus. as

Hamer and Frewin [9]suggested,alternativeformula-

tionsof equalor greatervaliditycan be found.However.

such changes imply shillsin the theoreticbasis of

software science.The data appear to support a wide

range of theories equally well.

DISCUSSION

Sol, rare science has been cnticized on many fronts.

Maleng(_ [I0] presented a thorough review, finding

Figure I. Reiauonshipbetween actuaklengthand Haistead

es,matedlength.

several errors in methodology, notably with Halstead's

use of logarithmic transformations. Coulter [2] focused

on the incorrect use of human memory models. Lister

[8] and Hamer and Frewin [91 criticized the _xpenmen-
tal methods. Shen et.al. [I L] summanzed the cnticisms

of software science and pointed out the questionable

derivationof some software scienceformulas.

The results of this study are fundamental in that they

challenge program length,which standsas the corner-

stone of the set of relations that comprise software

science. For Halstead. it was "the first equation found to

2-20

!

I
i
I
i

I
I

I
|

I
I
I

i
i
I

I
I

I
I

I

I
I

I
I

I
I
I

l
I

I
I

I
I

I
I
I

I

I

32

<

m
<
U
0
>

ACTUAL LENGTH

Figure 2. Relationship between actual length and vocabulary.

hold among the software parameters" [1). Maleng_

confirms the centrality of program length as "'the basic
rela_on of software physics (like pV = nRT or F = m_)
in the sense that. in what follows. Halstead uses N or IC,T

depending on the circumstances" [10]. Thus. the failure
of the length relation threatens the foundation of
software science.

Opera_ors and operands may represent ",he wrong

level of logical detail for modeling programs and the

program construction process. Kauth (12] observed that

programs contain recurnng parmrns. For example, 68 %
of assignment statements from his sample of FORTRAN

programs contained exactly one operator and two

operands. Assignment statements constimmd 51% of all

executable statements in his sample. This finding (re-
ported in 1971) is not consmen[with the software

science model of program consm:ction as a process of

random selection of individual operators and operands.
Programmers do not think in terms of individual

operators and operands but rather m terms of paradigms,
patterns, and plans [13].

The mathematical dependency noted earlier explains

why the length equation has appeared to have

rively strong empirical support. The (artificially) high

correlations between esumated and actual program

length should not be surprising, nor should the strong

relation reported between estimated length and execut-

2-21

Resolving the Sortware Science Anomaly 33

<
-j

uLa

z

o

J

! t

l 1

'l

1
I t

Z,mo-

1803 *

1200 ,,.

O00. ,*.

I l
) I

L f122
t 12

tlX + ? 2X 27 2_ L
1)2223Xt2t) l t l

t34235tb241X4 3 ! 3 tL
4323936_134?122t 1

??_88_1GN507o4_1722

• _ssssmSJS+)t2?tf
• t_ 2 L327 ? I

• It tl

-600. @

-1200 •

I I

I I

i I
1 I

I

!

11

1

ACTUAL LENGTH

4' I

4_

e

able statements, given Knuth's [12] findings. Several

researchers [14. 15] have reported that program length
(or volume) is highly correlated with simpler measures,
such as executable statements and decisions. Further-

more, another recent study [161 showed that software

science measures are not as effective as the simpler
measures in predicting the effort and error content of

programs.

CONCLUSIONS

This study has directly responded to the anomalous

mismatch of the theory and practice of software science

noted by Coulter [2] and expressed in the following way
by Shen et. al. [It]:

Figure 3. Residuals from onginal Halstead estimator.

Since the length equation has been found to be a valid and
useful formula in many different environments, there

should be a better way ro support it theoretically than that

offered by Haistead. But, to our knowledge no sound

justification has been offered to date.

This study resolves the software science anomaly by
demonstrating that the basic relation of software science
lacks empirical, as well as theoretic, support. Other
models based on counts of operators and/or operancis
[17, 18] are liable to similar analysis errors and theoretic

limitations. Future models of the program construction

process should be based more closely on observauons of
what programmers actually do [13].

2-22

I

I

I

I

I

I

I

I

I

I

I

I

I

i

I

I

l

I

I

i
I

l
I

l
I

I
l

l
l
I

I

I
I
I

I

I
I

34 D. N Card and W W

2700-

1000 *

1 i I

I] I

g00._ I !

•) I 1 l

, _=sIs=_q_s_sS_4_2s1123 7 I I 1 I s

. 11¢1}1_a_111_1 11111 I I 1

E 21 _1 ' 1 1

O •

• i
--1800 • t l

i

-2-mo

--_mO0 ,,

-4r_o

I

l

e

!

! .

l

ACTUAL LENGTH

Figure 4. Residuals from modified Halstcad esumator.

The challenge curremly before the software en[pneer-
ing research commumry is m resolve ir,s ambivajmn¢e
reward software science. Pra_cioncrs need a clear

sm_mem about the validly/ of software science mea-

suRs. A_ presem, that smmmem must be negative.

ACKNOWLEDGM ENT

The aumors would like to thank J. Elshoff and F.

McGarry for their commems on an earlier draf_ of this

paper.

REFERENCES

I. M. H. Haiste_, Elements of Software Science, Else-

vi_. New York, 1977.

2. N. S. Coulter, Software Science and Cogrmive Psych•l-

ogy. IEF_E Trans. Software Engineering 9(2), 166-171

(March 1983).

3. A. Ficzsimmons and T. Love, A Review and Evsluauon of

Software Sc:m_cc. ACM Compulmg Sur_e)_ 10(1), 3-18

(March 19"78).

4. D. N. Card, F. E.-McGarry, O. T. Page, et. ai., SEL-81-

104, The Software Engineering Laboratory. NASA/

GSFC, February 1982.

5. D. N. Card, F. E. McGarry, O. T. Page, e_. aL, SEL-83-

002, Measur_ and Metrics for Software Development,

NASA/GSFC. March 19g_,.

6. O.J. Dunn and V. A. Clark, Applied Slatixtic$: AnaLysis

of Variance and Regr_xion, John Wiley & Sons, New

York. 1974.2_3-246.

7. William of Ocld_m {1285-13_9), The law of Parxi.

mony (Occa_'s Razor).

8. A. M. Lister, Software Scienc_--'rhe Emperor's New

Clod,s?, Auszralmn Computer J. 1_2), 66-71 (May

1982).

2-23

Resolvtn_ :he Software Sc:ence Anomaly

9 P G. Hamer anti G. D Frewm. M. ["1. Halstead's

Software Sc:ence--A Cnttca| Examination. Proceedings

of the Sixth International Conference on Software

Engineering. Computer Societies Press, New York.

1982, 197-206.

I0. J. P. Maleng6. Cr_ique de [a Physique du Logici¢l.

O'niversite de Nice. France. Pub. Inform. [MAN-P-23.

October I980 (M. Marcotty, trans.).

11. V. Y. Shen. S. D. Contr. and H. E. Dunsmore. Soft'ware

Science Revisited: A Critical Analysts of the Theory and

Its Empirical Support. IEF_E Trans. Software Engineer-

ing 9(2), 15J-t6J (March 1983).

12. D. E. Kauth. An Empirical Study of FORTRAN Pro-

grams. Software-,Practice and E.,vpenence 1(1). 105-

133 (1971).

13. E. Soloway and K. Ehrtick. Empirical Studies of Pro-

gramming Knowledge. [EF_E Trans. Software Engineer-

ing 10(5). 595-609 (September 1984.).

2-24

35

[

|4 V R Basdi. Evaluat,ng Software Development Charac-

tenst=cs: Assessment or Software Measures m the Sort-

ware Engmeenng Laboratory. P,oceedings of the Sixth

Annual Software Engineering Workshop. NASA/

GSFC. December 1981.

15. D. Kafura. The Independence of Software Metrics Taken

at Different Life-Cycle Stages. Proceedings of the Ninth

Annual Software Engineering Workshop. NASA/

GSFC, November 1984.

16. V. R. Basili. R. W. Selby. and T. Phillips. Memo

Analysis _ Data Validation Across FORTRAN Pro-

jecu, [EE£ Transactions on Software Engme¢_ng

9(6), 652--663 (Nov 1983).

17. G. K. Zipf, Human Behavior and the Principle of Least

Effort, Addison-Wesley, Reading, MA, 1949.

18. $. H. Zweben. A Study of the Physical Structure of

Algorithms, [F.F_ Trans. Software Engineering 3(3),

250-2_8 (May 19773.

I

I

I

I

I

I

I

I

I

!

!

I

I

I

I

I

!

l

I

I

I
I'

I

I
I
I

I
I

I
I

I
I

I
I

I
I

I
I

"i___T_ /1_ /'_ I I I_OIV_
A _eA=_l a._i .as avj_v

A Controlled Experiment on the Impact

of Software Structure on Maintainability

H. D. Rombach

Reprinted from: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. SE-13. No. 3, MAR. 1987.

2-25

344 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13. NO. 3. MARCH 1987

A Controlled Experiment on the Impact of Software
Structure on Maintainability

H. DIETER ROMBACH

Abstract--This paper describes a study on the impact of software

structure on maintainability aspects such as comprehensibility, local-

ity, modifiability, and reusability in a distributed system environment.

The study was part of a project at the University of Kaiserslautern,

West Germany, to design and implement LADY, a LAnguage for Dis-

tributed systems. The study addressed the impact of software struc-

ture from two perspectives. The language designer's perspective was

to evaluate the general impact of the set of structural concepts chosen

for LADY on the maintainability of software systems implemented in

LADY. The language user's perspective was to derive structural cri-

teria (metrics), measurable from LADY systems, that allow the expla-

nation or prediction of the software maintenance behavior. A coo-

trolled maintenance experiment was conducted involving twelve

medium-size distributed software systems; six of these systems were

implemented in LADY, the other six systems in an extended version of

sequential Pascal. The benefits of the structural LADY concepts were

judged based on a comparison of the average maintenance behavior of

the LADY systems and the Pascal systems; the maintenance metrics

were derived by analyzing the interdependence between structure and

maintenance behavior of each individual LADY system.

Index Terms--Complexity metrics, comprehensibility, controlled ex-

periments, distributed systems, language comparisons, locality, main-

tainability, modifiability, reusability, software structure.

I. INTRODUCTION

HE growing complexity of software requirements on
one hand and the rapid advances and dropping cost of

microelectronics on the other hand make it more and more

attractive to use distributed systems. But this opportunity
cannot be used effectively unless appropriate development
and maintenance methodologies are available. Today, in
most cases, development and maintenance in distributed
system environments are supported by techniques and
tools originally intended for sequential problem solution
and centralized system architectures. No consensus has

been reached within the software community as to what
an appropriate software development and maintenance
environment for distributed systems should look like.

Manuscript received August 30, 1985; revised June 23. 1986. This work

was supported in part by the Ministry of Research and Technology of the

Federal Republic of Germany as pan of the DISTOS project at the Uni-

versity of Kaiscrslautem; preparation of the final version of this paper was

supported in part by NASA. Goddard Space Flight Center, under Grant

NSG-5123. Computer support was provided in pan by the Computer Sci-
ence Center at-ihe University of Maryland.

The author was with the Department of Computer Science, University

of Kaiserslautem. D-6750 Kaiserslautern. West Germany. He is now with

the Department of Computer Science. University of Maryland, College
Park. MD 20742.

IEEE Log Number 8610900.

This paper emphasizes two important methodological
aspects: 1) what are appropriate concepts to structure soft-
ware for distributed systems and how should these con-
cepts be represented as language features in order to sup-
port maintainability of the resulting software systems, and
2) what structural criteria (metrics), measurable from a
software system, can be used to explain or predict its
maintenance behavior. The maintenance aspects of inter-
est in this paper are comprehensibility (how hard is it to

• understand a given software system), locality (how many
software units are affected by each maintenance cause),
modifiability (how hard is it to change a given software
unit), and reusability (how effectively can already exist-
ing documentation and experience be used during main-
tenance).

The study presented in this paper was part of the DIS-
TOS project (DISTributed Operating System), started in
1980 at the Department of Computer Science of the Uni-

versity of Kaiserslautern, West Germany. The main part
of this project was the design and implementation of
LADY, a LAnguage for Distributed sYstems [18], [20].

The objectives of the presented study were to analyze
and answer whether the LADY language designers met
their maintenance oriented goals with the chosen concepts
and related LADY features, and to determine how devel-

opers can make effective use of these LADY concepts and
features in order to develop maintainable software by
measuring structural data that allow the explanation or
prediction of maintenance behavior. The approach chosen

to answer all those questions was to evaluate data gained
from a controlled maintenance experiment with 12 me-
dium-size software systems. Controlled experiments are
justified as a first step for verifying certain hypotheses.
Such an experiment allows concentrating on certain soft-
ware factors of interest, in this case structural factors, by
controlling others. On the one hand, results derived from
a controlled experiment cannot be transferred into a dif-
ferent project environment; such results always have to

be verified in a second step in this different project envi-
ronment. On the other hand, some phenomena might never
be detected in a real environment because their effect
might be overwhelmed by the effect of some other factor.

There are a number of related projects investigating the
appropriate structural concepts for distributed systems
(e.g., [1], [14], [16], and [21]). Besides all other differ-

ences between these projects and the DISTOS project,
DISTOS is the first project (to the author's knowledge)

0098-5589/87/0300-0344501.00 © 1987 IEEE

2-26

I

I
I
I

I

l
l

I

I
I
I

I

I
I
I
I

I
I
l

I

I

I

I
I

I
I

I

I
I

I
I

I
I
l

l
I

!
!

ROMBACH: IMPACT OF SOFTWARE STRUCTURE ON MAINTAINABILITY 345

that presents quantitative analysis results showing to what
degree the original goals were met by the chosen language

approach.

The following sections detail the software structure

model chosen for LADY, the software mainmnance model

used, the specific analysis goals and questions for the

study, a detailed description of the experimental ap-

proach, and analysis results.

II. SOFTWARE STRUCTURE MODEL

One traditional model of structuring software for dis-

tributed systems is to extend structural models existing in

sequential languages, such as Pascal, by including I) an
additional module type for representing parallelism (pro-

cess) and 2) mechanisms for passing messages among

processes.
The LADY model of structuring software for distrib-

uted systems is very different. This model allows the ex-

plicit representation of distribution aspects and different
intensities of coupling among software units. One hy-

potbesis is that this model allows a more natural repre-

sentation of software for distributed systems, which in turn

is expected to improve quality aspects such as maintain-

ability and reusability.

In this context, the most interesting structural concepts
of the LADY model are:

1) Three Different Refinement Levels to Describe Dis-

tributed Software Systems:

a) At the system level, a distributed system is de-
scribed as a set of distribution units (teams) communicat-

ing via message passing. This communication mechanism

is required because two teams, as units of distribution,

might be located at different nodes of a distributed system

without shared memory.

b) At the team level, each team is structured as a set

of processes communicating via shared memory (moni-
tors). This communication mechanism is possible and ap-

propriate because processes of one team will always b¢

located on one single node of a distributed system.

Specification levels a) and b) are intended to support

locality and modifiability by providing appropriate means

for moduiarization, and comprebensibilty by allowing the

development and maintenance personnel to understand the

system structure in two consecutive steps.

c) At the module level, each module type (process,

monitor, class, or procedure) is described by a Pascal-like

algorithm.
2) Two Different Communication Concepts: Po-

tentially distributed units (teams) communicate via mes-

sages; units that can never be distributed (processes within
one team) communicate via common memory. The avail-

ability of both communication concepts allows a natural

representation of different types of cohesion among pro-
CCSSCS.

3) Separation of Specification and Implementation:

This concept supports comprehensibility and reusability

by separating the use of a unit from its implementation.

4) Highly Parameterized Types of Structural Units:

TABLE I

STRUCTURAL LANGUAGE CONCEPTS

StructuraJ Concepts

Number of system

descrIptmn levels

System level

Team levd a tetra (the umt of

distribution] is d_

cribed u a $_ of

,room iutercoasected

via monitors

(SPECIFICATION)

N_a_luLe Itv_q Fau:b module (p_,

mooitc¢, elm. and

)rocedure| is dqmcnbed

by • sequentiLI p_¢M

_l&orithm

Comm_Iti¢_t_o_ canape 2 differentconcepts:

- Exch•nge of messages

Implementatmn La.... g,ag_

LADY C-TIP

a system hi described a system _ describ_l

u • seL e_" Le_rem _ L set of proce_

intercQaHcted via inteceoanected viz

cbsnnets betwetn channels be_w_n

input/oqtbgt por_.s input[output ports

SPECTFICATION) _SPEt:IF ICATIO.._I_ .

Each module (proc_.s,

eimm, and procedure}

i$ d_nb_l by •

s_luential pasted

• l_o_Lh m__...__.

I t s_n_e cou_pt.

[- ExchanGe or mes._ages

(between terms)

II - Common memory

l YF.S NO

(fo¢ teams and

: modules
YES yES

(supp_r%ed by (not supPocted by

librar s stem libr_r ss_e.7__A._L__

YES yES

(supported by (not, supporLed by

tlm I_N_, except _=mSU_l_e)

for number of pm'tS

•nd number of struetunJ

units)

5 ep_r _.t_on of

specific_ion

snd imp|e mcm t_,aon

St_o_| tygi_l_

Pa_lumete_za_on

This concept supports the extensive reuse of software

(12l.

In Table I the structural concepts of LADY and C-TIP

are compared.

III. SOFTWARE MAINTENANCE MODEL

Software maintenance is defined as the performance of

those activities required to keep a software system oper-

ational and responsive after it is accepted and placed into

production [10]. Maintenance activities can be divided

into three categories: corrective, adaptive, and perfec-

five. Whereas corrective maintenance refers to changes

usually triggered by a failure of the software detected dur-

ing operation, adaptive and perfective maintenance refer

to changes due to external changes. Adaptive mainte-

nance is initiated by changes of the operational environ-

ment; perfective maintenance is initiated by changes of

the requirements.

One important criterion for judging the quality of a

method or tool used during maintenance is its effective-

ness in either detecting failures, isolating all related faults,

or preventing errors while correcting the identified faults.

The underlying defect model [15], [24] recognizes the ex-

istence of three types of software defects: 1) Errors are

defects in the human mind, trying to understand given in-

formation, to construct and document solutions, or to ap-

ply methods and tools, 2) Faults arc the concrete mani-

festations of errors within the software (probably different

types of documents), and 3) Failures are departures of a

2-27

346
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3. MARCH 1987

software system from its requirements (or intended use
respectively) detected during operation. The purpose of
the study presented in this paper is to evaluate the impact
of a method to structure software for distributed systems
and the related language tool (LADY) on all three cate-
gories of maintenance activities. The evaluation process
is based upon the following software maintenance model:

1) Detection of Needs to Change Software: In the case
of adaptive and perfective maintenance this step is trivial;
in the case of corrective maintenance software failures

have to be detected. In most practical cases only system
failures can be detected and it is not trivial to determine
whether a system failure is due to a software failure, a
nonsoftware failure (e.g., hardware), or whether it is not
a failure at all. Erroneously reported failures may be due
to inappropriate documentation or differences between the

specified and user-expected function of a software sys-
tem; as a consequence, perfective maintenance activities
can be triggered.

2) Isolation of Related Faults: The isolation of all
software faults having caused a particular failure or that
exist because of changed environment or requirements is
crucial for the success of a maintenance task. Being a_,are
of the fact that different faults can trigger identical fail-
ures, the isolation of all faults related to a certain failure
can definitely be considered to be a difficult maintenance
step.

3) Correction of Faults: The correction of isolated

faults should follow the same pattern as development ac-
tivities: a) designing possible changes, b) implementing
one selected change design, and c) validating the changed
software. In general there exist different options to correct

isolated faults. Different alternatives should be designed;
their impact on other parts of the system should be ana-
lyzed. Finally a decision concerning the "best" design
has to be made. The degree of validation is determined
by the changes made.

Only those maintenance aspects are included in this
model that are important with respect to the evaluation
goal of this study. Therefore, this model, as opposed to
other models [10], emphasizes the technical aspects of
software maintenance rather than the management aspects
such as "scheduling of maintenance tasks" or "releasing
changed software."

IV. ANALYSIS GOALS AND QUESTIONS

Quantitative studies require a mechanism for determin-
ing what data is to be collected, why it is to be collected,
and how the collected data is to be interpreted. The mech-
anism proposed in [6] calls for 1) determining the analysis
goals of interest and 2) refining each goal into a set of
questions for the purpose of quantifying the goals of in-
terest. The questions define the specific set of data to be
collected.

The two analysis goals of this study are:
1) Determine differences in the maintenance behavior

of systems implemented in either one of two languages
(LADY and C-TIP) that are different with respect to the

;ncorporated structural concepts and features (language
designer's goal).

2) Determine measurable structural criteria (complex-
ity metrics) that allow the explanation or prediction of the
maintenance behavior of a LADY system (language user's
goal).

A. Analysis Questions Related to Goal 1)

Goal 1) is refined into five analysis questions, to be an-
swered by comparing the average maintenance behavior
of the LADY systems and the C-TIP systems:

1) Maintainability: Is the average effort in staff-hours
per maintenance task different?

2) Comprehensibility: Is the average isolation effort
(effort to decide what to change) in staff-hours per main-
tenance task, or the average amount of rework (all effort
spent for changing already existing documents such as re-
quirements, designs, code, or test plans) per system unit
as a percent of all effort spent per unit throughout the life-
cycle different?

3) Locality: Is the average number of changed units per
maintenance task, or the average maximum portion of the
change effort spent in one single unit per maintenance task
different?

4) Modifiability: Is the ave.rage correction effort in
staff-hours per maintenance task and unit different?

5) Reusability: Is the average amount of reused docu-
mentation as a percent of all documentation per mainte-
nance task different?

The maintenance behavior is not only evaluated with
respect to maintainability, but also with respect to indi-
vidual steps of the maintenance model. Failure detection
is not expected to be impacted by software structure;

therefore it is not evaluated in the context of this study.
In contrast, the isolation step is evaluated in terms of
comprehensibility and locality, and the correction step in
terms of modifiability. In addition, the impact of LADY
on reusability is analyzed; reuse of software can be ex-
pected to improve the quality and productivity of main-
tenance substantially.

B. Analysis Questions Related to Goal 2)

Goal 2) is refined into analysis questions similar to goal
1) but will be answered by analyzing the impact of the
structure of each individual LADY system on its actual
measured maintenance behavior:

1) Maintainability: What is the impact of the individ-
ual software structure on the average effort in staff-hours
per maintenance task?

2) Comprehensibility: What is. the impact of the indi-
vidual software structure on the average isolation effort
(effort to decide what to change) in staff-hours, and on the

amount of rework as a percent of all effort per mainte-
nance task?

3) Locality: What is the impact of the individual soft-

ware structure on the average number of changed units per
maintenance task and on the average maximum portion of

2-28

I
I

I
I

I
I
I

I
I

I
I

I

I
I

I
I
I

I
I

I

I

I

I

I

I

I

i

I

I

I

I

I

I

I

I

I

I

I

ROMBACH: IMPACT OF SOFTWARE STRUCTURE ON MAINTAINABILITY 347

the change effort spent in one single unit per maintenance
task7

4) Modifiability: What is the impact of the individual
software structure on the average correction effort in staff-
hours per maintenance task and unit.'?

5) Reusability: What is the impact of the individual
software stnicture on the average percentage of reused
documentation per maintenance task?

While questions related to goal I) address whether there
is a difference using either one of the two languages with
respect to maintainability, questions related to goal 2) are
intended to define structural criteria for good maintenance
behavior of LADY systems. This paper emphasizes the
answers to questions related to goal l); only a brief over-
view is given on possible answers to questions related to
goal 2).

V. EXPERIMENTAL APPROACH

The hypothesis in this paper is that software structure
impacts software maintenance. A blocked subject-project
study [5] was conducted to verify this hypothesis. This
type of study exanlines the analysis goals and questions
across a set of students (performing maintenance tasks)
and a set of software systems. The originality of this study
comes from the fact that real maintenance experiments
were conducted. On the contrary, most of the published
results concerning software maintenance behavior are

based upon change data collected during development.
The underlying but unverified assumption in these papers
is that the change behavior during development and main-
tenance is identical.

A. Maintained Software Systems"

Data on the maintenance behavior of 12 medium-size

software systems were collected. These systems were de-
veloped prior to this study and can be divided into four
classes with respect to their requirements and the used
implementation language:

I) LADY TSS: Three systems implementing require-
ments of a time sharing system in LADY.

2) C-TIP TSS: Three systems implementing the iden-
tical requirements of a time sharing system in C-TIP.

3) LADY PCS: Three systems implementing require-
ments of a process control system in LADY.
• 4) C-TIP PCS: Three systems implementing the iden-

tical requirements of a process control system in C-TIP.
The functions of the time sharing system are similar to

those of the SOLO operating system [7]. The process con-
trol system controls a hierarchically organized system to
distribute parcels by ZiP-code.

A brief overview of the systems of each class in terms
of size, structure, and development effort is contained in
Table II.

B. Experiment

For each of the 12 systems characterized in Table IIa

series of 50 maintenance tasks was designed: 25 correc-
tive, 10 adaptive, and 15 perfective maintenance tasks.

TABLE II

MAINTAINED SOFTWAIE SY_I'EM$

(mean values per system class)

The corrective maintenance tasks were triggered by sys-
tem failure specifications, the adaptive maintenance tasks
by change specifications of the operational environment,
and the perfe*ctive maintenance tasks by change specifi-
cations of the requirements, respectively. Altogether, 600
maintenance tasks were conducted, the maintenance effort

per task varied from 15 minutes to more than I day.
Whereas the design of the changes of environment and

requirements was no problem, the design of the faults to
cause the 25 failures was complicated. The goal was to
conduct identical maintenance tasks for all twelve soft-

ware systems. This goal could not be met because of dif-
ferent requirements, peripheral device environments, and
different software structure. The compromise was to con-
duct identical patterns of experiments for all twelve sys-
tems. The environment and requirement changes were
completely identical for those systems implementing
identical requirements (see previous subsection about the
maintained software systems). The ideal set of 25 faults
(only faults not detectable by compiler) would be repre-
sentative for faults to be expected during real maintenance
for each system, identical across all systems implement-
ing identical requirements, and causing identical failures
in all systems. Neither of these requirements can be ful-
filled. There exists no accepted theory to predict the num-
ber or type of faults that will be detected during use of a
system based on development data, nor is it possible to
seed systems of different structure with identical faults,
and even identical faults in different systems do not nec-
essarily result in identical failures observed during use.

Therefore, the set of 25 failures was different for each
system. But for each system the set of faults fulfilled three
impomant criteria:

1) The distribution of faults was identical to the aver-

age one detected during development of these systems
with respect to some fault classification scheme.

2) The faults affected identical system functions in each
system implementing identical requirements, and the
faults covered all structural system units at each level.

3) The fault classification scheme used in this study
distinguished between data faults, control faults, and
computation faults, either affecting only one single unit
or affecting more than one unit [24].

2-29

348
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-13. NO. 3, MARCH 1987

C. Maintenance Personnel

The maintenance tasks were carried out by six graduate
level research assistants. All of the students gained their
knowledge about the maintenance environment (described
in the following subsection) from a six month practical
software engineering project and classes at the University
of Kaiserslautem. Each of the students maintained one

time sharing system and one process control system, both
implemented in either LADY or C-TIP.

The validity of the results from comparing the mainte-
nance behavior of LADY and C-TIP depends on equally
qualified maintenance personnel. The selection pr6cess
was based on a variety of criteria. The students were
ranked according to educational performance (course
grades), experience (in industrial projects), and their rel-
ative programming talent. The results from the practical
project were particularly useful in estimating the relative
programming talent of a set of candidate students for this

experiment; the relative programming talent was judged
based on the time spent for completing the course assign-
ment and the quality of the final product according to some
acceptance test procedure. The students ranked one, four,

and five were assigned to maintain C-TIP systems, the
students ranked two, three, and six were assigned to
maintain LADY systems. There was a random assignment
of students in each language class to time sharing systems
and process control systems; the only restriction was that
a student who was involved in the prior development of a
particular system (two out of six students) was not al-

lowed to maintain this same system. The selection pro-
cess was not and could not be completely objective and is
therefore subject to criticism.

Another problem which might result in falsifying the
results of controlled experiments is the Hawthorne effect
[8]. When human beings become aware that certain as-
pects of their behavior is being monitored, their behavior
will change. There is no simple solution to this problem.
However, it can be assumed that this effect becomes in-

significant if human beings are monitored over a long pe-
riod of time. This was the case with this controlled ex-

periment. The students involved were used to be
monitored over a period of one or two years prior to the
experiment: as part of several prior assignments, includ-
ing the practical course mentioned above, they had to fill
out forms identical to those used during the controlled ex-
periment.

Despite this training course, it can be assumed that stu-
dents were still more familiar with C-TIP than they were
with LADY because Pascal is the language used for ed-
ucation at the University of Kaiserslautern. Later in this
paper, the analysis results will be interpreted taking this
fact into consideration. Each student had two weeks time

to become familiar with the systems to be maintained by
reading all the available documents and learning to use
the systems prior to the experiment.

D. Experimental Environment

The maintenance environments for the controlled ex-

periments were almost identical for both language classes
[22]. The target system for all maintained software sys-
tems was a network of six Texas Instruments 990/5 mi-
crocomputers. Texas Instruments 990/10 minicomputers
were used for all maintenance activities. The tool envi-

ronment can be divided into three parts:
1) A requirements and design documentation tool [26],

which can be used to input, validate, change, and docu-
ment requirements and design decisions. The chosen type
of design representation is based on ideas of DeRemer
and Kron about module interconnection languages [9]. A
refined language version was used in these experiments
[231, [261.

2) A separate set of implementation tools for each lan-
guage, LADY [17] and C-TIP, each consisting of a com-
piler and an integrated library system to maintain all ex-
isting team and module type implementations.

3) A functional test tool, which supports the design of
test cases (based on information from the design _ool) by
selecting test data, creating test beds, running tests, and
documenting test results.

The technique used for isolating faults was reading doc-
uments. The techniques used for validating the correct-
ness of changes were testing and reading.

E. Data Collection and Validation

Data were collected both to characterize the software
structure and to characterize the maintenance behavior.

According to the previously listed analysis goals and
questions, the following data had to be collected in order
to characterize the maintenance behavior:

1) Number of modules changed per maintenance task.

2) Effort (in staff-hours) to isolate what to change per
maintenance task.

3) Effort (in staff-hours) to ,mplement changes per
maintenance task and unit.

4) Portion of already existing documentation reused per
maintenance task.

These data were collected for each maintenance task by
forms [22], that are similar to those developed i'n the Soft-
ware Engineering Laboratory at NASA/University of
Maryland [27]. Validation of the collected data was car-
ried out by the author by meeting with each of the students
after each experiment. A sound data validation procedure
[2] is crucial for the significance of analysis results.

Data to characterize the software structure of each
maintained system were collected from each design and
implementation document. They were collected from the
version available at the end of development and updated
after major maintenance changes. These data are easier to
validate than maintenance data because they are based on
written information in various documents. The collected
data from implementation documents can be divided into

2-30

I
I

I
I

I
I
I

I

I

I

I

I

I

I

i

l

I

I

I

I

I

I

I

I

I

I

ROMBACH: IMPACT OF SOFTWARE STRUC_r'O'RE ON MAINTAINABILITY

two major classes:I)data relatedto the externalcom-

plexityof each structuralunit,and 2)datarelatedtothe

internalcomplexityofeach structuralunit.Externalcom-

plexityisbased on an informationflow model similarto

the one presentedby Henry and Kafura [13];itwas re-

finedand extended for use inthisspecificenvironment
[22], [23].

1) External complexity data coll_ted from each unit
are:

a) Number of input ports, number of output ports (for
processes or teams), number of functional entries (for
classes or monitors), and number of parameters per port
or entry, if observing a single unit.

b) Number of other units explicitly connected to the
observed unit via a channel to/from this unit or implicitly
connected to the observed unit by exchanging information

via other units or using shared assumptions,I if observing
a unit as integrated into the whole system.

2) Internal complexity data collected from each unit
arc:

a) Length of modules: the number of lines of imple-
mentation documents excluding pure" comment lines.
Length of teams: the number of its modules.

b) Structure of modules: the number of nonse_en-
tial control flow constructs. Structure of teams: the num-
ber of communication channels between its modules.

c) Intensity of the environment embedding of a unit:
the number of interface accesses occurring within the unit
implementation documents. These interface accesses are
either send/receive operations to activate communication
channels (in the case of teams or processes), or procedural
calls of other units (in the case of monitors, classes, and

procedures).
The corresponding structural design data were collected

from function oriented designs [23].

F. Data Evaluation

All questions related to goal 1), i.e., whether there is a
difference between LADY systems and C-TIP systems
with respect to maintainability, were answered by com-
paring the average maintenance data across the four dif-
ferent classes of maintained software systems. The statis-
tical test used in this part of the study was the
nonparametric Mann-Whitney U-test; it allows to deter-
mine the significance of maintenance differences between
two different classes of systems. All differences reported
in the following section are of significance level 0.05 or
better; in the case of comparing two populations of three
systems each the best possible significance level is 0.05.
In addition, statistical results need always be supported
by evidence of causal relationships; in this study we want

_Shared assumptions are all types of dependencies among software units

which ate not explicitly represented as interface data or global data. A

frequent example is an implicitly shared assumption concerning buffer size.

2-31

349

to be sure that the observed differences with respect to
maintenance are really caused by structural differences and
not differences among the maintenance personnel or the
influence of other factors. Conducting a sound controlled
experiment with constant environmental and personnel
factors suggests that the only variable factor, structure, is
responsible for observed differences.

All questions related to goal 2), i.e., which structural
criteria (metrics) allow the explanation or prediction of
the maintenance behavior, were answered by determining
the correlation between different aspects of maintenance
behavior (see section on goals and questions) and different
aspects of software structure for all software units. The
statistics used in this part of the study were the nonpara-
metric Spearman correlation coefficient and related
significance test [28]. The different aspects of software
structure under investigation were all individual internal
complexity aspects, all external complexity aspects which
may or may not include implicit relationships among units
(as listed in the previous subsection), and all possible
(multiplicative) combinations of external and internal com-
plexity aspects. These analyses finally resulted in identi-
fying meaningful metrics for this particular environment.

VI. QUANTITATIVE COMPARISON OF Two LANGUAGE

CONCEPTS

The data collected from the controlled experiment as
well as analysis results are presented according to the
analysis questions related to goal 1). All presented differ-
ences between mean values are significant at the 0.05 level
or better.

1) Maintainability is characterized by the average ef-
fort in staff-hours per system and maintenance task.

The differences in Table HI between the average cor-
rection effort of LADY and C-TIP systems are not signif-
icant for any type of maintenance cause (failures, envi-
ronment changes, and requirement changes). In contrast,
LADY systems require significantly (p < 0.05)2 less iso-
lation effort than C-TIP systems for each class of main-
tenance causes (32.9 percent less for failures, 16.7 per-
cent less for environment changes, and 28.9 percent less
for requirements changes). The ability to understand sys-

tem complexity in three steps and the availability of sep-
arate specification and implementation documents for each
unit in LADY are assumed to be mainly responsible for
the detected difference. This conclusion is supported by
the data in Table IV.

This table contains a subset of the data in Table HI (only
for failures) partitioned into the class of more complex
time sharing sytems and the class of less complex process
control systems.

=The symbol p will be used to stand for significance level according to
the Mann-Whimey U-test.

35O
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 3, MARCH 1987

TABLE III
MAINTAINABILITY

(mean values per language and maintenance cause class)

D_a

Effort (in staff-

hours) per system _d

mldntenLnee tuk for

- iloll_ion + correction

-iso[aLion

- c¢¢r eetion

LIm_uage and Maintenance Cause C|lubgea

F_ilures

LADY C-TIP

1 .S9 2.04

0.98 1.48

0,61 0.M

Environm. Changes

LADY C-TIP

13.82 1S.93

IO.M 12.82

3.06 3.25

' Rtquirem. Changes

LADY C-TIP

8.27 11.24

5.37 8.96

1.90 2.2_

TABLE IV
MAINTAINABILITY

(mean values per system class)

(only for failures)

System CI_

TSS PCS

Data LADY C-TIP LADY " C-TIP

Effort (in staff-

hours) per system and

matntencnee task for

- ts(_atton _ correctton 2.10 2.80 1.00 1.29

- ia_i_aon 1.33 2.09 0.53 0.84

- correction" 0.77 0,71 0.45 0.45

TABLE v

COMPREHENSIBILITY

(mean values per system class)

System Cl_es

TSS PCS

Data trAOY C-TIP],ADY C-TJP

Rework per system

(in percent) of

- Ill development effort

- only development effort

related to require-

mencs, system design.

and team design
dOCuments

57.83 44.35 56.91 40.59

50.20 76.83 58.40 58.52

TABLE Vl
LOCALITY

(mean values per system class)

Data

Number of changed uniU

per system land mlMn-

ten,nee tJmk

- teams Imd modules

-oniv modules

Highest effort spent

in one sinsle unit per

ayetem and mlunten&nce

¢Mk (in percent of all

effort per system and

m&intenanee task)

System Cl_s

TSS PCS

; LADY C-TIP LADY C-TIP

2.71 2.47 2.0_ 2.46

1.92 2.47 1.62 24¢

85 74 70 S9

The advantage of using LADY with respect to isolation

effort is only significant (p < 0.05) for time sharing sys-
tems. The conclusion from this observation is that the

three-level description provided by LADY is obviously an

advantage for complex systems, but not an advantage or

even a disadvantage in the case of very small systems. If

the systems are so small that each team only consists of

one single process, the redundant team level description

is, of course, not helpful.

2) Comprehensibility is determined by the average ef-

fort necessary to understand what needs to be changed.

This portion of the maintenance effort (isolation effort) is

contained in Tables III and IV. Therefore the conclusions

are identical to those for maintainability.

Another characterization of comprehensibility is the

amount of rework done; the more a problem is misunder-

stood, the more rework can be expected. Besides the ef-

fort spent on changes during development, all mainte-

nance effort (at least in the case of failures) is considered

rework. Because rework is only of interest in relation to

nonrework, it can only be evaluated properly based on

data from the prior development of the software systems

under investigation. Valid development data" were avail-

able for all development phases excluding test phases. The

effort data collected during testing proved to be less valid

due to the nature of testing and debugging.

The overall rework is significantly (p < 0.05) higher

for LADY systems than for C-TIP systems (57.83 versus

44.36 percent). Because the main differences between

LADY and C-TIP deal with interunit structure, it seems

worthwhile to look into the portion of rework spent in

requirements, system and team design documents before

unit test. For this rework portion a significant (p < 0.05)

difference for time sharing systems can be observed: 50.29

percent rework for LADY systems, but 76.83 percent for

C-TIP systems. This result is supported by the subjective

impression of the author that students developing LADY

systems understood the overall system better before start-

ing with detailed module design than did students devel-

oping C-TIP systems. The rework data from test phases

are not as reliable, but in general the rework portion over

the entire development process is about 20 to 25 percent

higher (in absolute numbers) than the rework percentages
excluding testing, as contained in Table V.

3) Locality is characterized in this study by the average

number of changed modules per system and maintenance

task, and the average maximum portion of the change ef-

fort concentrated in one single unit per maintenance task.

As a consequence, locality of a system is good if I) only

a small number of units is affected by each maintenance

task, or 2) when more than one unit is affected, a high

percentage of effort is concentrated in one single unit.

The numbers of affected units per maintenance task in

Table VI can give a wrong impression because in the case

of LADY systems specification units (teams) are counted

in addition to algorithmic units (modules). Therefore, only

the average number of modules should be compared.

The average number of affected modules is significantly

(p < 0.05) lower in the case of LADY systems (e.g.,

1.92 versus 2.47 for time sharing systems). Beyond it, if

more than one module is affected, significantly (p <

2-32

I
I

I
I

I
I
I
I

I
I

I
I

I
I
I

I
I

I
I

I

I

I

I

I

I

I

l

I

I

l

l

I

I

I

I

I

I

Is

ROMBACH: IMPACT OF SOFTWARE STRUCTURE ON MAINTAINAB[UTY 351

TABLE Vll•
MODIFIABILITY"

(meanvaluespersystemclass)

Dgta

o (m su,_-houm)
_em. pet system, meduGL
amd mmnldenamee
creased by • (adur_ for

- isolat.ma÷ ¢o_tioQ

- on|y correction

STstem Claims
TSS PCS

LADY C-TIP LADY C-TIP

1.09, 1.1_ 0.67 0?.2
0.40 O.'_ 0.28 0.1g

0.05) more effort is concentrated in one single module on
average (e.g., 85 versus 74 percent for time sharing sys-
tems). It seems that modules in LADY are better used to

support principles such as data abstraction or information
hiding.

Another interesting aspect is that during the develop-
ment of LADY systems (without manipulated change
causes), it seldom was more than one team changed.
Teams proved to be especially suited for encapsulating
functional units ot: systems. This result is even more re-
markable because students had much more experience in
applying the structural concept integrated in C-TIP than
the one integrated in LADY.

4) Modifiability is characterized by the average correc-
tion effort per unit and maintenance task. The correspond-
ing numbers in the case of failures in Table VII are de-
termined easily by dividing either the overall effort or only
the correction effort (see Table IV) by the product of num-
ber of failures (25) and average number of changed mod-
ules per failure (see Table VI).

As expected, the average effort in staff-hours to correct
a single module seems to be relatively independent of the
chosen implementation language. Whether the correction
process was conducted well can not be decided based on

the experimental design; the number of faults introduced
during correction or not found during isolation was not
large enough to derive statistically significant results.
Nevertheless, the results with respect to comprehensibil-
ity in terms of rework have indigated that, at least during
development, the amount of rework is significantly lower
in the case of LAD g systems. Based on these results from
development it is hypothesized (without verification) that
the structural concepts of LADY make it easier to under-
stand a complex software system and make it less likely
to miss existing faults or to introduce new faults during
maintenance.

5) Reusability is characterized by that pordon of sys-
tem documents that does not need to be developed be-
cause it was developed previously. Most of the differ-
ences in Table III in the case of changes of environment
can be explained by the LADY language concept of "de-
vice teams," which allows easy integration of new or dif-
ferent device.s into a system. The differences in Table HI
in the case of requirements changes can be partly ex-
plained by LADY's concept of parameterizcd unit types.
There was substantial reuse of team and module types;

new module objects could often be integrated without any
modifications.

Reuse of team types is more complicated. The current
LADY version allows no change of the number of module
objects and the port interface by parameters. Therefore,
even if a team type could be completely reused with re-
spect to its function, each environment change that re-
quires a port interface change results in a new team type:
Due to this restricted parameterization concept the reus-
ability of teams is limited.

Overall, about 60 percent of all new integrated modules
in the case of changes of requirements are reused un-
changed. Another 20 percent required only port interface
changes. In contrast, about 45 percent of the new C-TIP
modules are reused (unchanged or slightly changed) for
requirements changes. In the case of failures, it is hard to
describe the level of reusability. In this study only reuse
of implementations Coy creating new objects of parame-
terized types) was measured. If the term reuse is thought
to include the reuse of design documents or even the reuse
of experience, then, naturally, the level would be higher.

VII. COMPLEXITY M_-rmcs FOR MAINTENANCE

Only highlights of the results of the analysis questions
of goal 2) are presented in this section; the presentation
is restricted to resultsconcerning LADY systems. For a
more detailed discussion of all questions about the impact
of software structure (as measured from implementation
or design documents) on maintenance behavior (in the
case of LADY and C-TIP as implementation languages)
the reader is referred to other papers [22], [23].

To characterize briefly the impact of the structure of
LADY systems on their maintenance behavior, the suit-
ability of three classes of complexity metrics is discussed
to explain or predict the different maintenance aspects.
The three classes are: internal (or code oriented) com-
plexity metrics (length, structure, and intensity of embed-
cling), external (or system structure oriented) complexity
metrics (information flow between units with or without
implicit flows), and hybrid complexity measures (combi-
nations of metrics of the other two classes). First, the best

metric is presented for each maintenance aspect. It is noted
that the combined complexity metrics are much better than
either internal or external complexity metrics. In addi-
tion, it is discussed whether the exclusion of nonexplicit
measurable information flow has disadvantages. It should
be mentioned that all of the following results are validated
by determining the nonparametric Spearman rank corre-
lation coefficient. Therefore, these metrics are only valid
on an ordinal scale. All correlations presented are signif-
icant at the 0.001 level or better.

J) Maimainability: The average effort (in staff-hours)
per unit and maintenance task is best explained or pre-
dicted by those combined complexity metrics that mea-
sure the external complexity by information flow includ-

ing implicit flows and measure the internal complexity by
either length or structure (average r: 0.9; p < 0.001)J.

2-33

352
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13. NO. 3. MARCH 1987

Combined complexity metrics without implicit flows
(average r: 0.85; p < 0.001) are still sufficiently good.
Even the internal complexity metrics length and structure
(average r: 0.7; p < 0.001) and external complexity
metrics (average r: 0.75; p < 0.001) are useful to ex-
plain or predict maintainability.

2) Comprehensibility: The average isolation effort (in
staff-hours) per maintenance task is best explained or pre-
dicted by those combined complexity metrics which mea-
sure the external complexity by information flow includ-
ing implicit flows and measure the internal complexity by
either length or structure (average r: 0.85; p < 0.001).
Combined complexity metrics without implicit flows
(average r: 0.74; p < 0.001) are still sufficiently good.
Even the internal complexity metrics length and structure

(average r: 0.66; p < 0.001) and external complexity
metrics (average r: 0.8; p < 0.001) are useful to explain
or predict comprehensibility. The results are similar to
those for maintainability, except that the influence of im-
plicit information and the dominance of external com-

plexity compared to internal complexity is more obvious.
3) Locality: The average number of changed units per

maintenance task, and the average maximum portion of
the change effort spent in one unit per maintenance task
are best explained or predicted lay those combined com-
plexity metrics which measure the external complexity by
information flow including implicit flows and measure the
internal complexity by the intensity of environment em-
bedding (average r: 0.92; p < 0.001). Again, combined
complexity metrics without implicit flows (average r:
0.83; p < 0.001) are still sufficiently good. Locality is
the only maintenance aspect where internal complexity
metrics such as length and structure show no correlation.
Instead, the newly defined internal complexity metric
characterizing the intensity of the environment embed-
ding (measured, e.g., for processes, by the number of

send and receive calls) shows surprisingly high correla-
tion (average r: 0.78; p < 0.001). The external com-
plexity metrics (average r: 0.8; p < 0.001) are still very
useful to explain or predict locality.

4) Modifiability: The average effort (in staff-hours) per
maintenance task and module is best explained or pre-
dicted by those combined complexity metrics which mea-
sure the external complexity by information flow includ-

ing implicit flows and measure the internal complexity by
either length or structure (average r: 0.83; p < 0.001).
Combined complexity metrics without implicit flows
(average r: 0.81; p < 0.001) are still sufficiently good.
The internal complexity metrics length and structure
(average r: 0.8; p < 0.001) are especially useful to ex-
plain or predict modifiability. The external complexity
metrics are very unreliable to predict modifiability (aver-
age r: 0.62; p < 0.001). The differences, when corn-

3The symbols r and p will be used to stand for Spearman correlation

coefficient and significance level, respectively.

pared to all other maintenance aspects, are that modifia-
bility is less influenced by implicit information flows and
that internal complexity aspects are more dominant than
external complexity aspects.

5) Reusability: No metric to explain or predict reus-
ability could be validated by the available data. The sub-

ject impression of the author is that reusability is influ-
enced much more by good specifications separated from
the implementation, extensive use of parameterization,
and the availability of tool supported document adminis-
tration rather than by structural aspects. The first two cri-
teria are especially supported by LADY, and this might
explain the better reusability results in Section VI. How-

ever, this. assumed impact could not be quantified.
The important results can be summarized as follows:
l) The impact of structure on software behavior could

be quantified for all defined maintenance aspects except
for reusability.

2) The best results were obtained from combined com-

plexity metrics. The external complexity included implic-
itly measurable information flows; the internal complex-
ity was characterized by length or structure, except for
locality where the intensity of unit embedding was most
sensitive.

3) The combined complexity metrics that exclude im-
plicitly measurable information flows still showed suffi-
ciently good results. This fact allows the use of com-
pletely automatable metrics.

4) Often, very simple metrics such as the internal com-
plexity metrics did very well in explaining or predicting
maintenance behavior. This was especially true in the case
of modifiability.

5) The fact that external complexity metrics were suf-
ficiently good, particularly for comprehensibility and lo-
cality, encouraged the author to use these metrics to ex-

plain or predict maintenance behavior based upon software
structure measured from design documents [23].

To explain or predict maintenance aspects reliably, a
metric vector has to be observed including at least the
presented types and a metric measuring the balance be-
tween average system, team, and module level complex-
ity. Systems which were Very different in the way com-
plexity was distributed between these three levels showed
different maintenance behaviors. Although it is not yet
known what constitutes a good distribution, it is evident
that the distribution of structural complexity across dif-
ferent description levels influences maintenance (espe-
ciaUy comprehensibility).

The presented metrics can be readily used in projects
by establishing lower and upper bounds (baselines) for the
complexity of units in a specific environment. If the value
for a given unit exceeds the given boundaries, it should
be examined to determine whether this' unusual complex-
ity value is justified or not. As a consequence, either the
corresponding unit has to be changed, or if the unit is not
going to be changed, at least it should be watched closely
in the future. In order to make effective use of these corn-

2-34

i

I
I
I

I
I
I

I
I

I
I

I
I
I

I
I
I

I
I

I

I

I

l

I

I

l

l

i

I

I

I

I

!

l

I1

I

I

I

ROMBACH:IMPACTOF SOFTWARESTRUCTUREON MAINTAINAB|LITY

plexitymetricsinsoftwareprojectsthey have tobe com-

putedautomatically.

VHI. CONCLUSIONS

The newly developed implementation language for dis-
tributed systems with its characteristic structural con-
cepts, LADY, proved to be better suited to develop main-
tainable software than the trivial extension of sequential
Pascal (Table I). Especially for complex systems, the lan-
guage design decisions to describe a software system on
three different refinement levels and to separate specifi-
cation and implementation of each unit had a positive im-
pact on maintainability. As the locality results [see Sec-
tion VI-3)] show, the unit types for distribution (teams)
and separate compilation (modules) are well suited to
structure software according to principles such as infor-
mation hiding and data abstraction. The strong typing
combined with high parameterization of units seems to
improve reusability of units. Based on the fact that the
students who carried out the controlled experiments are
more experienced in using Pascal than LADY, one can
speculate that the LADY-specific results will become even
better as experience using the LADY concepts increases
(learning curve).

For all maintenance aspects except reusability the re-
sults could be stated quantitatively in terms of complexity
metrics. The fact that most of the maintenance aspects can
be explained and predicted sutticiently well by the use of
only explicitly measurable information .flows between
units makes it possible to automate these metrics. This is
a prerequisite for using metrics in practical project envi-
ronments and, thereby, obtaining additional validation re-
sults.

Before the results can be used in different environments

they have to be revalidated in these environments. Results
with respect to goal I) can be used for setting up criteria
for selecting an appropriate implementation language for
a distributed software project or for setting up an evalu-
ation framework for language development groups. Re-
sults with respect to goal 2) can be used as management
tools during development and maintenance. After having
established baselines concerning the relation between
software structure and maintenance behavior for a given
environment, such metrics can be used as tools indicating

abnormally high or low structural complexity. Such in-
dications should lead to a careful analysis of whether the
complexity is justified or whether better solutions exist.
The fact that the metrics can be automated and applied in
very early design phases make them a very powerful man-
agement tool.

Further research in this field will be concentrating on
the validation of these results in new projects and the de-
velopment of metrics measuring the actual degree of ful-
fillment of desirable structural principles, such as infor-
mation hiding, within a given language. Research of the

353

latter type is being conducted in the case of Ada ® at the
University of Maryland [3], [4], and [11].

At the University of Kaiserslautern a follow-up project,
the INCAS project (INCremental Architecture for distrib-
uted Systems), was started in 1983; this project aims at
the development of a comprehensive methodology for the
design of locally distributed systems [19], [25"]. As part
of the INCAS project, an improved version of LADY was
developed. Some of the improvements were stimulated by
the results presented in this paper.

ACKNOWLEDGMENT

I would liketoexpressmy thankstoProf.J.Nehmer,

Department of Computer Science Of the Universityof

Kaiserslautern,West Germany, forhisinitialencourage-

ment and many subsequent helpful comments; M. Clev,
E. Jergens, U. Marx, H. Neumann, A. Schwartz, R.
Wagner, and V. Wilke, graduate students at the Univer-
sity of Kaiserslautem for their careful experimental work
and data collection that this paper is based on; NASA,
Goddard Space Flight Center, for its support of the prep-
aration of the final version of this paper; and C. Loggia
Ramsey and J. Ramsey, University of Maryland, for their
constructive comments on a previous version of this paper
published at the Maintenance Conference in Washington,
October 1985. Finally I want to thank the Guest Editor,
N. Schneidewind, and the referees for their thorough crit-
icism and for numerous suggestions.

REFERENCES

[l] G. T. Alines. A. P. Black. E. D. Lazowska. and J. D. Nne. "'The

Eden system: A technical review.'" Dep. Comput. Sci.. Univ. Wash-

ington. Seattle. Tech. Rep. 83-10-05. Oct. 1983.

[2] V. R. Basili. "'Data collection, validation, and analysis." in Tutorial

on Models and Metrics for Software Management and Engineering.

IEEE Catalog No. EHO-167-7, 1981, pp. 310-313.

[3] V. R. Basili and E. E. Katz, "'Metrics of interest in an Ada environ-

ment.'" IEEE Comput. Soc. Workshop Software Eng. TechnoL Trans-

fer. 1985.

14] V. R. Basilio E. E. Katz. N. M. Panlilio-Yap. C. Loggia Ramsey.

and S. Chang. "Characterization of an Ada software developmem.'"

Computer. vol. 18. no. 9, pp. 53-65. Sept. 1985.

[5l V. R. Basili, R. W. Selby. Jr., and D. H. Hutchens, "'Experimen-

tation in software engineering." Dep. Comput. Sci.. Univ. Mary-

land, College Park, Tech. Rep. TR-1575, Nov. 1985: also IEEE

Trans. Soft,_are Eng.. vol. SE-12. pp. 733-743. July 1986.

[6] V. R. Basili and D. M. Weiss. "'A methodology for collecting valid

software engineering data." IEEE Trans. Software Eng.. vet. SE-IO,
pp. 728-738. Nov. 1984.

[71 P. Brinch Hansen, "The SOLO operating system," Software--Prac-

tice and Experience, vol. 6. no. 2. pp. 141-200. Apr.-June 1976.

[8] J. Brown. The Social Psychology ofindtat_'. Baltimore. MD: Pen-

guin Books. 1954.

[9] F. DeRemer and H. H. Kron. "'Programming-in-the-large versus pro-

gramming-in-the-smell." IEEE Trans. Software Eng.. vol. SE-2, pp.
80-86. June 1976.

[101 Federal Information Processing Standards. Guideline on Software
Maintenance, U.S. Dep. Commerce/National Bureau of Standards.
Standard FIPS PUB lOCi. June 1984.

[1 ll J. D. Gannon. E. E. Katz. and V. R. Basili. "'Metrics for Ada pack-

ages: An initial study. "" Common. ACM. vol. 29. no. 7. July 1986.

OAda is a registered trademark of the U,S, Department of Defense (Ada

Joint Program Office).

2-35

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,'VOL. SE-13. NO. 3, MARCH 1987

[12] J. A. Goguen, "Par-*meterized programming," IEEE Trans. Soft-
ware Eng., vol. SE-10, pp. 528-543, Sept. 1984.

[13] S. Henry and D. Kafura, "Software structure metrics based on infor-
mation flow," IEEE Trans. Software Eng., vol. SE-7, pp. 510-518,
Sept. 1981.

[14] R. C. Holt, Concurrent Euclid, the Unix System, and Tunis. Read-

ing, MA: Addison-Wesley, 1983.
[15] Standard Glossary of Sol:ware Engineering Terminology, IEEE, New

York, IEEE Standard 729-1983, 1983.
[16] B. Liskov, "On linguistic support for distributed programs," IEEE

Trans. Software Eng., vol. SE-8, pp. 148-159, May 1982.

[17] R. Massar, "LADY--A language for distributed operating systems:
Design and implementation," Ph.D. dissertation, Dep. Comput, Sci.,
Univ. Kaiserslautem, West Germany, July 1984.

[18] J. Nehmer, R. Masser, W.-F. Racke, H. D. Rombach, and R. Schra-
pel, "DISTOS: A method for constructing distributed operating sys-
tems," Dep. Comput. Sci., Univ. Kaiserslautern, West Germany,

DISTOS Project Rep., Apr. 1982.
[19] J. Nehmer, C. Beiiken, D. Habun, R. Massar, F. Mattem, H. D.

Rombach, F.-J. Stamen, B. Weitz, and D. Wybranietz, "The multi-
computer project 1NCAS---:Objectives and basic concepts," SFB 124,
Univ. Kaiserslautern, West Germany, Tech. Rep. 11/85, 1985.

[20] J. Nehmer and D. Wybranietz, "LADY--A language for the design
of distributed operating systems," in Proc. ACM SIGOPS Workshop

iO_gerat. Syst. in Comput. Networks, Ruschlikon, Switzerland, Jan.
5.

[21] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin,
and G. Thie|, "LOCUS: A network transparent, high reliability dis-

tributed system," in Proc. 8th Syrup. Operat. Syst. Principles, Dec.
1981, pp. 169-177.

[22] H. D. Rombach, "Quantitative evaluation of software quality char-

acteristics based on system structure," Ph.D. dissertation, Dep.
Comput. Sci., Univ. Kaherslautem, West Germany, June 1984.

[23] --, "Software design metrics for maintenance," in Proc. 9th Annu.
Software Eng. Workshop, NASA, Goddard Space Flight Center,
Greenbelt, MD, Nov. 1984.

[24] V. R. Basili and H. D. Rombach, "Tailoring the software process to
project goals and environments," Dep. Comput. Sci., Univ. Mary-
land, College Park, Tech. Rep. TR-1728, Nov. 1986.

[25] H. D. Rombach, "The multicomputer project INCAS--Objectives,
basic concepts, and experience," in Proc. Pacific Comput. Commun.
Syrup., Seoui, Korea, Oct. 1985.

[26] H. D. Rombach and K. Wegener, "Experiences with a MIL design
tool,'" in Proc. 8th Conf. Programming Languages and Program De-
velopment, Zurich, Switzerland, Mar. 1984.

[27] SEL, "'Software engineering laboratory (SEL): Data base organiza-
tion and user's guide," NASA, Goddard Space Flight Center, Green-
belt, MD, Rep. SEL-81-102, July 1982.

[28] S. Siegel, Nonparametric Statistics for the BehavioralSciences. New
York: McGraw-HiU, 1955.

H. Dieter Rombach was born in West Germany.
He received the B.S. degree in mathematics from
the University of Karisruhe, West Germany, in
1975, the M.S. degree in mathematics and com-

puter science from the University of Karlsruhe in
1978, and the Ph.D. degree in computer science
from the University of Kaiserslautern, West Ger-

many, in 1984.
From 1978 to 1979 he was a Research Staff

Member in the Institute for Technical Data Pro-

cessing, Nuclear Research Center, Karlsruhe.
From 1979 to 1984 he was a faculty member with the Department of Com-

putur Science at the University of Kaiserslautem. He is currently an Assis-
tam Professor of Computer Science at the University of Maryland, College
Park. His research interests include software methodologies, measurement

of the software process and its products, and distributed systems.
Dr. Rombach is a member of the IEEE Computer Society, the Associ-

ation for Computing Machinery, and the German Computer Society ({3I).

2-36

I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I
I

I

I

I
I

I
I

I
I
l

l

I
I
I

I

I
I
I

I
I

I
|

Technical Report TR-1708 September 1986

An Evaluation of Expert Systems for

Software Engineering Management *

Connie Loggia Ramsey and Victor R. Basili

Department of Computer Science

University of Maryland at College Park

ABSTRACT

Although the field of software engineering is relatively new, it can
benefit from the use of expert systems. Four prototype expert sys-

tems have been developed to aid in software engineering manage-
ment. Given the values for certain metrics, these systems will pro-

vide interpretations which explain any abnormal patterns of these

values during the development of a software project. The four

expert systems, which solve the same problem, were built using
two different approaches to knowledge acquisition, a bottom-up

approach and a top-down approach, and two different expert sys-
tem methods, rule-based deduction and frame-based abduction. A

comparison was performed to see which methods better suit the
needs of this field. It was found that the bottom-up approach

led to better results than did the top-down approach, and the

rule-based deduction systems using simple rules provided more

complete and correct solutions than did the frame-based abduction

systems.

" Research supported in part by the National Aeronauti_ and Space Administration Grant NSG-5123 to the

University of Maryland. Computer support provided in part by the Computer Science Center of the University of Mary-

land.

2-37

The rest of this paper is organized as follows. Section 2 provides a brief overview

of the underlying methodology used to build the expert systems discussed in this paper.
Section 3 details the implementations of ARROWSMITH-P, and Section 4 discusses the

issues and problems associated with this process. Section 5 furnishes the details for the

evaluation of the expert systems. Section 6 then discusses results and conclusions from

the development and testing of the expert systems. Finally, Section 7 discusses current
and future research needs.

2. BACKGROUND

[n general, an expert system consists of two basic components, a domain-specific
knowledge base and a domain-independent inference mechanism. The knowledge base

consists of data structures which represent general problem-solving information for some

application area. The inference mechanism uses the information in the knowledge base
along with problem-specific input data to generate useful information about a specific
case. o

The set of expert systems in ARROWSMITH-P was constructed using I_IS
[Reggia82a], an experimental domain-independent expert system generator which can be

used to build rule-based, frame-based and Bayesian systems. The ARROWSMITH-P
systems were built using two different methods: rule-based deduction and frame-based

abduction. These two methods are briefly describ.ed below.

2.1. Rule-Based Deduction

A common method for expert systems, and essentially the "standard" in AI today,
is rule-based deduction. In this approach, domain-specific problem-solving knowledge is
represented in rules which are basically of the form:

"IF <antecedents> THEN <consequents>",

although the exact syntax used may be quite different (e.g., PROLOG). If the
antecedents of such a rule are determined to be true, then it logically follows that the

consequents are also true. Note that these rules are not branching points in a program,
but are non-procedural statements of fact.

The inference mechanism consists of a rule interpreter which, when given a specific
set of problem features, determines applicable rules and applies them in some specified

order to reach conclusions about the case at hand. Rule-based deduction can be per-
formed in a variety of ways, and rules can be chained together to make multiple-step

deductions. (For a fuller.description, see [Hayes-Roth78}.) In addition, in many systems
one can attach "certainty factors" to rules to capture probabilistic information, and

'variety of.mechanisms can be used to propagate certainty measures during problem solv-

ing. MYCIN IShortliffe76] and PROSPECTOR [Campbell82] are two well-known exam-
ples of expert systems which incorporate rule-based deduction.

2.2. Frame-Based Abduction

Another important method for implementing expert systems is frame-based abduc-

tion. Here, the domain-specific problem-solving knowledge is represented in descriptive

2-38

I
I

I
I

l

I
I
I
I

I

I
I

I
I

I
I
I

I
I

"frames" of information [Minsky75], and inference is typically based on hypothesize-

and-test cycles which model human reasoning as follows. Given one or more initial prob-

lem features, the expert system generates a set of potential hypotheses or "causes" which

can explain the problem features. These hypotheses are then tested by (1) the use of

various procedures which measure their ability to account for the known features, and

(2) the generation of new questions which will help to discriminate among the most
likely hypotheses. This cycle is then repeated with the additional information acquired.

This type of reasoning is used in diagnostic problem solving (see [Reggia82b] for a

review). INTERNIST [Miller82], KMS.HT [Reggia82a], [Reggia83a], PIP [Pauker76}, and
IDT [Shubin82] are t_'pical systems using frame-based abduction.

In order to simulate hypothesize-and-test reasoning, KMS employs a generalized set

covering model in which there is a universe of all possible manifestations (symptoms)

and a universe which contains all possible causes (disorders). For each possible cause,
there is a set of manifestations which that cause can explain. Likewise, for each possible

manifestation, there is a set of causes which could explain the manifestation. Given a
diagnostic problem with a specific set of manifestations which are present, the inference

mechanism finds all sets of causes with minimum cardinality** which could explain

(cover) all of the manifestations. For a more detailed explanation of the theory underly-

ing this approach and the problem-solving algorithms, see [Reggia83a], [Reggia83b],

[Nau84], [Peng84].

3. IMPLEMENTATIONS

In this section, we will first present the methodology developed for building expert
systems for software engineering. Then we will discuss the actual implementations of
ARROWSMITH-P.

3.1. Methodology

The following two methodologies of knowledge acquisition for constructing expert
systems for software engineering management were developed. They can best be

described as a bottom-up methodology and a top-down methodology. (An earlier version

of the bottom-up reasoning was presented in [Doerflinger83].)

3.1.1. Bottom-Up Methodology

Given a homogeneous environment, it is possible to produce historical,

environment-specific baselines of normalized metrics from the data of past software pro-

jects. Normalized metrics are derived by comparing variables such as programmer hours
and lines of code against each other. This is done so that influences such as the size of

the individual project are factored out. The baseline for each metric is defined as the
average value of that metric for the past projects at various discrete time intervals (such

** Ockham's razor, which states that the simplest explanation is usually the correct

one, together with the assumption of independence among causes motivate the require-

ment of minimum cardinality.

3

2-39

as early coding or acceptance testing). Only those metrics which exhibit baselines with

reasonable standard deviations should be used; too little variety in the values of the

measures proves uninteresting, while too much variety is not very meaningful. In addi-

tion, one ideally wants a relatively small number of meaningful metrics whose values are
easily obtainable.

Next, experts can determine interpretations, such as unstable specifications or good
testing, which would explain any significant deviation (more than one standard deviation
less than or greater than the average) of a particular metric from the historical baseline.

The deviation of some metric can be thought of as a manifestation or symptom which
can be "diagnosed" as certain interpretations or causes. Furthermore, these relation-

ships between interpretations and manifestations should be made time-line specific

because, for example, an interpretation during early coding might not be valid during
acceptance testing. In addition, measures to indicate how certain one is that the devia-

tion of a particular metric has resulted from a particular interpretation can be included.

The approach, described above, can be classified as a bottom-up approach because

it seems to go in the opposite direction of cause-and-effect. First the symptoms (deviant
metric values) that something is abnormal are explored, and then the underlying

interpretations or diagnoses of the abnormalities are developed. This approach to
knowledge acquisition is reasonable in a homogeneous environment because the metrics

are homogeneous, and deviations are indicative that something is wrong. However, this

approach contrasts with the development of expert systems in other fields, such as medi-
cine, which typically use a top-down approach.

3.1.2. Top-Down Methodology

A top-down approach to knowledge acquisition can be similar to the bottom-up
approach in that the same manifestations and causes can be used. However, it would
first define the various interpretations or diagnoses and then associate the metrics which

would be likely to have abnormal values for each interpretation.

Using the top-down approach, the experts view the knowledge from a different per-
spective when defining the relationships that exist between the interpretations and man-

ifestations. This approach can be seen as a more general approach than the bottom-up

approach is So knowledge acquisition in the field of software engineering. In the

bottom-up methodology, the metrics are analyzed first and these are, by their nature,
environment-specific. The focus is automatically limited to the specific environment.

Conversely, in the top-down methodology, the experts think first of the causes or

interpretations and then indicate the effects or likely metrics which would show deviant
values if a certain interpretation existed. This generalizes the problem across environ-

ments somewhat because the emphasis seems to be switched to the interpretations which
can be universal.

3.1.3. Using the Expert Systems

Once the expert systems have been developed, the input to each expert system
would then consist of those metrics from a current project which deviate from a histori-

cal baseline of the same metrics at the same time of development for similar projects.

The knowledge bases consist of information about various potential ca.uses, such as poor

testing or unstable specifications, for any abnormally high or low measures, and the
expert system provides explan_.tions for any abnormal software development patterns.

4

2-40

i
I

i
I
I

I
I
I

I

I
I

I
I
I
I

I
I

I
I

I

!
I

!

i

I
I

!

i
I
I
i
l
I
I
I
I
i
I

3.2. Actual Implementations

ARROWSMITH-P consistsof four separate expert systems, one using a bottom-up

approach to knowledge acquisitionand rule-baseddeduction, a second using the

bottom-up approach and frame-based abduction, a third using a top-down approach to

knowledge acquisitionand rule-baseddeduction,and a fourth using the top-down

approach and frame-based abduction.

The bottom-up methodology describedabove was based on previous research con-

ducted on the NASA/Goddard Space FlightCenter Software Engineering Laboratory

(SEL) environment [Doerninger83].Since the SEL environment ishomogeneous, itwas

possibleto produce historical,environment-specificbaselinesof normalized metricsfrom

the highly reliabledata of nine software projects.(See [Basili77],[BasiliS4b],[Basili78],

[Card821,[SEL82[for fullerdescriptionsof the SEL environment.)

The bottom-up development was performed first,and nine metrics,derived from

fivevariables,proved satisfactory,exhibitingbaselineswith reasonablestandard devia-

tions. The metrics are displayed inTable I. These same metricswere laterused during

the top-down development to ensure consistencyand to allow a comparative study to be

performed. The time-linefor the baselineswas divided (aftera slightmodification)into

the following fivediscreteintervals:earlycode,middle code, latecode,systems test,and

acceptance test.

The initialsetsof interpretationsand the relationshipsbetween the interpretations

and the abnormal values of metrics were mainly derived from two expertswho have had

a great deal of experiencein thisfieldand particularlyin the SEL environment

[Doerflinger83].During the bottom-up development of ARROWSMITH-P, mainly one of

these experts modified the existingsetsand made them time-linespecific.In addition,

measures to indicatehow certainone isthat the interpretationand the abnormal metric

value are connected were included. During the top-down development, the same two

experts were again asked to provide the relationshipsfor allfivetime phases, and the

intersectionof theirresponses was used forthe expert systems. Some of theirother indi-

cated relationshipswere used as well;when the expertsdid not agree on a relationship,

we discussed the situationto understand the reasoning behind the relationshipand to

see how certain an expert felt about the relationship. The list of interpretations used
and tested in the bottom-up and top-down expert systems is displayed in Table 2.

TABLE I - METRICS USED IN EXPERT SYSTEM

- Computer Runs per Line of Source Code
- Computer Time per Line of Source Code

- Software Changes per Line of Source Code

- Programmer Hours per Line of Source Code
- Computer Time per Computer Run
- Software Changes per Computer Run

- Programmer Hours per Computer Run
- Computer Time per Software Change

- Programmer Hours per Software Change

5

2-41

(Other interpretations were used as well, but these could not be tested. See [Basili85] for
the complete list.)

As stated previously, two different expert system methods were used to build the
expert systems for this application in order to determine which method better suits the

needs of this field. The two methods used were rule-based deduction and frame-based

abduction which were described in Section 2. In the rule-based systems, the rules are of

the form "IF manifestations THEN interpretations," while in the frame-based systems,
there is one frame (containing a list of manifestations) for each interpretation. Please

note that these formats are independent of whether the relationships between manifesta-
tions and interpretations were defined using a bottom-up or a top-down approach to

knowledge acquisition. The rule-based and frame-based systems which used the

bottom-up approach were intentionally built to be as consistent with one another as pos-
sible. The causes and manifestations used were identical in both cases, as were the rela-

tionships between them. The same was true for the two expert systems which employed
the top-down approach. However, the certainty factors attached to the rules and the

measures of likelihood in the frames could not be directly translated to each other so

some of these measures were omitted. For example, within the bottom-up approach we

were relatively certain that an abnormally high value of computer time per software
change is caused by good, reliable code so this was given a certainty factor of 0.75.

TABLE 2 - INTERPRETATIONS USED IN EXPERT SYSTEM

Unstable Specifications .

Low Productivity
High Productivity

High Complexity or Tough Problem

High Complexity or Compute Bound Algorithms Run or Tested
Low Complexity
Simple System
Error Prone Code

Good Solid and Reliable Code

Large Portion of Reused Code

Lots of Testing

Little Testing

Good Testing or Good Test Plan

Lack of Thorough Testing
Poor Testing Program

Changes Hard to Make

Loose Configuration Management or Unstructured Development
Tight Configuration Management or Control

Computer Problems or Inaccessibility or Environmental Constraints
Lots of Terminal Jockeys

Note - In the top-down systems, low complezity and simple system were combined into one in-

terpretation as were lack of thorough testing and poor testing program. In addition, the tight
management interpretation was removed.

6

2-42

I

!
I
i

!
i

!

I

However, if that particular metric appears abnormally high very infrequently and that

particular interpretation is common, then we would not be able to state that good, reli-

able code generally results in an abnormally high value of computer time per software

change. (For a discu_ion of similar problems see [Ramsey86].) Figure 1 shows a sample

section of a rule-based and a frame-based knowledge base. Example sessions with the

expert systems are provided in Appendix 1.

4. RESEARCH ISSUES AND PROBLEMS

The field of expert systems is relatively new, and therefore, the development pro-

cess of expert systems still faces many problems. The selection of which method to use

for building them is not generally clear, although an attempt has been made to provide

guidelines for the selection of an appropriate method in [Ramsey86]. Furthermore, most
expert systems are shallow in nature and cannot handle temporal or spatial information
well.

In addition to general problems, negative effects are compounded when the

knowledge to be included in such systems is incomplete. The science of software

engineering is not well-defined yet, and therefore many details about the relationships

between various components is often unclear. The experts themselves may not even
agree on the information used in the expert systems..4_s a result, the knowledge base of

any expert system developed in this field is particularly exploratory and prototypical in
nature. This is in contrast to expert systems developed in established fields such as

medicine where the information contained in the knowledge base is based on many years
of experience.

Due to the uncertainty of the data in the knowledge base for a field such as

software engineering, one must deal with the issues of completeness versus correctness
and completeness versus minimality. When dealing with a diagnostic problem, the more

certain one is of relationships between causes and manifestations, the more exact the

answer can be, ultimately leading to the one correct answer. However, when dealing
with very uncertain relationships, it is preferable to list many outcomes so as to avoid

missing the correct explanation, and to let the experienced person using the expert sys-
tem decide what the correct explanation really is. Therefore, rules with simple

antecedents were used in the rule-based deduction systems (see Figure la) because the
more involved patterns needed for complex antecedents are not yet known. If one tried

to "guess" what these patterns are without actually being certain, this would lead to
incomplete solutions which miss some of the correct interpretations For example, a high

value for computer runs per line of code, a high value for computer time per line of code,

and a high value for programmer hours per line of code are all indications of low produc-
tivity. So, we might construct the following rule for this pattern:

IF Computer Runs per Line of Code is above normal, and Computer Time per Line

of Code is above normal, and Programmer Hours per Line of Code is above normal

THEN the interpretation is Low Productivity.

However, what if it turns out that computer time per line of code is almost never above

normal? Then this rule will almost never succeed, and we will miss the interpretation of
low productivity even if it happens to be true.

7

2-43

ATTRIBUTES:
f

/* INPUT ATTRIBUTES */

COMPUTER RUNS PER LINE OF SOURCE CODE (SGL):
ABOVE NORMAL,

NORMAL,
BELOW NORMAL.

/* INFERRED ATTRIBUTE */

INTERPRETATION (MLT):
UNSTABLE SPECIFICATIONS
LOW PRODUCTIVITY
HIGH PRODUCTIVITY

GOOD TESTING OR GOOD TEST PLAN

RULES:

CRLC1 IF COMPUTER RUNS PER LINE OF CODE = ABOVE NORMAL,
& TIME = EARLY CODING

THEN INTERPRETATION = LOW PRODUCTIVITY <0.25>,
& INTERPRETATION = ERROR PRONE CODE <0.75>.

SCLC3 IF SOFTWARE cHANGEs PER LINE OF CODE = ABOVE NORMAL,
& TIME = LATE CODING

THEN INTERPRETATION = GOOD TESTING OR GOOD TEST PLAN <0.25>,
gr INTERPRETATION = ERROR PRONE CODE <0.75>.

Figure la - Small Section of Rule-Based Deduction Expert System.

ATTRIBUTES:

/* INPUT ATTRIBUTES */

COIvIPUTER RUNS PER LINE OF SOURCE CODE (SGL):
ABOVE NORMAL,

* NORMAL,
BELOW NORMAL.

/* INFERRED ATTRIBUTE- FRAMES */

INTERPRETATION (MLT):
LOW PRODUCTIVITY

[DESCRIPTION:

COMPUTER RUNS PER LINE OF CODE _ ABOVE NORMAL;
COMPUTER TIME PER LINE OF CODE = ABOVE NORMAL;

PROGRAMMER HOURS PER LINE OF CODE = ABOVE NORMAL],
GOOD TESTING OR GOOD TEST PLAN

[DESCRIPTION:

SOFTWARE CHANGES PER LINE OF CODE = ABOVE NORMAL;
SOFTWARE CHANGES PER COMPUTER RUN = ABOVE NORMAL;

COMPUTER TIME PER SOFTWARE CHANGE = BELOW NORMAL;

PROGRAMMER HOURS PER SOFTWARE CHANGE = BELOW NORMAL {,

Figure lb - Small Section of Frame-Based Abduction Expert System

2-44

I
i

I

I
I
1
I

I
I1
l
I
I
I
I
I
I
i
I
I

This issue also leads to concern in the frame-based abduction systems which pro-

vide all answers of minimum cardinality. The inference mechanism works very well for

most diagnostic problem solving, but one must be cautiously aware of the fact that not

all possible explanations are provided by this expert system. For example, if an abnor-

mally high value of computer runs per line of code and an abnormally low value of pro-
grammer hours per software change can be explained by the combination of two

interpretations, low productivity and good testing, and also by a single interpretation,
error prone code alone, then only the single interpretation will be provided by this sys-

tem. This is because the single interpretation has a lower cardinality than the two

interpretations together.

One final, but very important, fact should be noted here. ARROWSMITH-P was

built using the data from one particular homogeneous environment. Therefore, the
information in the knowledge base reflects this one environment and would not be tran-

sportable to other environments. However, the ideas and methods used to build

ARROWSMITH-P are transportable, and that is what is important.

5. EVALUATION OF EXPERT SYSTEMS

5.1. Methods of Evaluation

ARROWSMITH-P has been evaluated in several ways. The correctness of the sys-

tems was measured by comparing the interpretations provided by the expert systems

against what actually happened during the development of the projects, thereby obtain-
ing a measure of agreement. This analysis was performed for ten projects (the original

nine plus a newer project which was completed after the development of the expert sys-

tems).in all five time phases for each of the four expert systems. Each of the original
nine projects was compared against historical baselines of the remaining eight projects to

determine abnormal metric values, and the tenth project, which was tested later, was

compared against the original nine. A total set of 50 cases was tested on each of the
four expert systems.

The actual results of what took place during development were gathered from
information in another section of the database, mostly from subjective evaluation forms

and project statistics forms. The subjective evaluation form contains mostly subjective

information (such as a rating of the programming team's performance) and some objec-

tive numbers (such as total number of errors) concerning the project's overall develop-
ment. Since the vast majority of the ratings in the subjective evaluation form is not

divided by phase of the project, there probably exist some discrepancies between the
results indicated in the forms and the actual interpretations for a particular phase.
However, these are the closest data that are available, so we must assume that most of

the interpretations for each phase are similar to the interpretations for the entire pro-

ject. In addition, some of the interpretations derived from analyzing the data in the
database were very evident, while others were somewhat uncertain. Therefore, these two

classes were partitioned in the analysis of agreement between the expert systems and the
information in the database.

The results from the expert systems were also analyzed statistically by using a

Kappa statistic test [Spitzer67} [Cohen68} on each interpretation. The Kappa statistic

9

2-45

determines whether the results are better or worse than chance agreement. It takes into

account the number of correct answers and the number of incorrect answers with respect

to each interpretation, and it determines the amount of agreement which can be attri-

butable to chance alone. The formula for the Kappa statistic is:

Po-P_

I-P_

where Po is the observed proportion of agreement, and Pc is the proportion of agreement
expected by chance. A value of 1 for K indicates perfect agreement, a value of 0 indi-

cates that the results can be due to chance alone, and a value less than 0 indicates worse

than chance agreement. The Kappa statistic was used for each interpretation in each of

the four expert systems. This was done to determine whether certain interpret_ations are
better understood than others.

In addition to testing the performance of the expert systems, an analysis was per-

formed to compare the information provided by the two experts for the systems. This

was performed by comparing the relationships indicated by each of the experts against

each other and also by comparing the relationships indicated in the bottom-up systems
against those indicated using the top-down approach.

5.2. Results

The first results we would like to discuss are those comparing information provided

by the experts. This is essential because the expert systems can only perform as well as

the knowledge contained in the systems permits. The experts were asked to fill in grids
(one for each time phase for the bottom-up approach and one for each time phase for

the top-down approach) indicating the relationships between the !nterpretations and the
manifestations as described in Section 3. The comparison between the sets of grids for

the top-down approach is provided in Table 3a. (The data for one of the experts using
the bottom-up approach is incomplete, so a comparison between the two experts was not

made there.) The experts only agreed in about 1/3 - 1/2 of their indicated relationships.
Furthermore, the final set of relationships for the top-down approach is very different

from the final set for the bottom-up approach. (See Table 3b.) When deciding on the
relationships during the top-down development, the experts even decided to combine

some of the interpretations used in the bottom-up approach, feeling there was too little
difference in meaning between them to be significant, and they also dismissed several

interpretations during certain time phases (and tight management during all time phases)

because they felt that the meaning of those interpretations could not be captured by the
available metrics in that particular time period. We believe that the differences between

the two approaches are mainly due to two facts: (1) the experts were seeing the data
from a very different point of view, and (2) the metrics.are not ideal, and the experts

were not completely certain of all of the relationships that they stated so they changed
their opinions over time. However, there were certain relationships which proved more

consistent than others. For example, the two experts had strong agreement over the
relationships involving programmer hours per line of code, software changes per line of

code, and computer time per computer run. These metrics seem to be better understood

than the others probably because they are often used for evaluation and comparisons in

this field. They also had fairly good agreement with the interpretations of error prone
code, lots of reused code, and loose management. The top-down and bottom-up expert

10

2-46

!

!

I

!

!
I
I

I
i
i

I

I
,|

i
i
i
i

!
!
I

I
I
I
I
!
I
!
l
|,,

!
Ii
t
II
I
II
II

systems had good agreement over programmer hours per line of code and software
changes per line of code and over the interpretations of error prone code and good "solid
code.

The results of evaluating the four expert systems are displayed in Tables 4.1 and

4.2. The entries in the agreement column are the number of interpretations which were
indicated by both the expert system and the information in the database. The first

number depicts those interpretations which were explicit in the database, while the
second number represents those which were marginally indicated. The entries in the

disagreement column are those interpretations indicated by the database, but not listed

by the expert system. Again, the first number represents those which are certain and
the.second number is those which are marginal. Finally, the column labeled "Extra"

specifies the number of extra interpretations listed by the expert system. This number is

not that meaningful in determining the performance of the rule-based systems at this

time because, as discussed previously, the rule-based systems were built to provide as
complete a list of interpretations as possible. The manager would then have to decide

which interpretations are meaningful and disregard the others. However, in general, it is

better to have as few extra interpretations as possible. It should be noted that the total
number of interpretations varies from table to table. This is because certain metrics

were not available for some projects in some of the time phases. It would be unfair to

say the expert systems did not detect certain interpretations if they were not given the

manifestations necessary to do so, so these interpretations were not included in the
results of the evaluation for those particular cases.

Table 3a - Comparison of Responses Provided by Experts

in Each of the Five Time Phases for the Top-Down Expert Systems

Time Phase

Early Coding

Middle Coding

Late Coding •

Systems I'est

Acceptance Test

Number of Relationships Indicated by Experts
Expert 1 Expert 2 Intersection

66 60 23

78 65 28

81 68 38
79 48 3O

68 42 23

Table 3b - Comparison of Final Bottom-Up and Final Top-Down Expert Systems

Time Phase

Early Coding
Middle Coding

Late Coding

Systems Test

Acceptance Test

Number of Relationships Used in Each Approach

Bottom-Up I

61

65
63

65

62

Top-Down

35
43

5O

40
37

I Intersection

15

19
23

17

17

11

2-47

Table-l.la- Agreement between Expert System and Information in Database

Bottom-Up Systems, Early Coding Phase

Rule-Based Deduction System Frame-Based Abduction System
Project

1
2

3

4
5

6
7

8

9

10

Total

Percent

Agreement

Agreement Disagreement Extra

1 -0 0-0 2

0-3 3-1 7
0-I 0-0 9

0-0 "3-1 0
2-0 2-0 5

0-1 l-2 3

i-0 3-2 1

0-0 3-1 0

1-3 2-0 8

5-2 2-0 " 4

10- I0 19- 7 39

Explicit 34% (10/29)

Marginal 59% (10/17)

Combined 43% (20/46)

Agreement Disagreement Extra

1-0 0-0 2

0-0 3-4 1
0-1 0-0 5

0-0 3-1 0

1-0 3-0 3
0-1 1-2 3

1-0 3-2 1

0-0 3-1 0
0-0 3-3 1

1-0 6-2 0

4 - 2 25 - 15 16

14% (4/29)

12/% (2/17)
13% (6/46)

Table 4.1b - Agreement between Expert System and Information in Database

Bottom-Up Systems, Middle Coding Phase

Project

1
2

3

4
5

6

7

8
9

10

Total

Percent

Agreement

Rule-Based Deduction System

Agreement Disagreement Extra

2-1 0-0 7

0-0 3-4 0
0-1 0-1 11

1-1 2-0 1

0-0 5-0 0
i-3 0-0 7

2-O 2-2 4

4-1 1-2 2

1-1 2-2 2
4-1 3-1 5

15- 9 18- 12 39

Explicit 45/% (15/33)
Marginal 43% (9/21)

Combined 44/% (24/54)

Frame-Based Abduction System
Agreement Disagreement Extra

0-0 2-1 1

0-0 3-4 0

0-0 0-2 1
1-1 2-0 1

0-0 5-0 0

0-0 1-3 1

0-0 4-2 2
1-0 4-3 0

1-1 2-2 2
1-0 6-2 3

4 - 2 29 - 19 11

12/% (4/33)

10% (2/21)
11% (6/54)

12

2-48

Table4.1c- AgreementbetweenExpertSystemandInformationin Database
Bottom-UpSystems,LateCoding Phase

Rule-Based Deduction System Frame-Based Abduction System

Project

1
2

3

4

5
6

7

8

9

10

Total

Percent

Agreement

Agreement Disagreement Extra

2-0 0-1 6

1-3 2-1 8
0-0 0-2 0

1-0 2-1 3

0-0 6-0 5
1-2 0-1 5

0-1 4-1 0

3-0 2-3 3

1 -0 2-3 2

0-1 7-1 3

9 - 7 25- t4 35

Explicit 26% (9/34)

Marginal 330"/o (7/21)
Combined 29% (16/55)

Agreement Disagreement Extra

0-0 2-1 2

1-1 2-3 4
0-0 0-2 0

1-0 2-1 0

0-0 6-0 5
0-1 1-2 1

0-1 4-1 0

1-0 4-3 2

1-0 2-3 1
0-1 7-1 3

4- 4 30- 17 18

12% (4/34)
19% (4/21)
15% (8/85)

Table 4.1d - Agreement between Expert System and Information in Database
Bottom-Up Systems, Systems Test Phase

Project

1

2

3

4
5

6
7

8
9

l0

Total

Percent

Agreement

Rule-Based Deduction System
Agreement Disagreement Extra

1-0 1-1 8

0-3 3-1 7

0-0 0-1 0

1-I 2-0 4
1 -0 5-0 0

1-2 0-1 5

1-1 3-1 3
3-0 2-3 1

1-1 2-2 6
0-1 7-1 3

9 - 9 25 - 11 37

Explicit 26% (9/34)

Marginal 45% (0/20)

Combined 33% (18/54)

Frame-Based Abduction System

Agreement Disagreement Extra

1-0 1-1 6

0-0 3-4 1

0-0 0-1 0
1-0 2-1 0

1-0 5-0 0

0-0 1-3 1

1-1 3-I 3
3-0 2-3 '1
1-1 2-2 6

0-1 7-1 3

8- 3 26- 17 21

24% (8/34)
15°/o (3/20)
_% (11/54)

13

2-49

Table4.1e- Agreement between Expert System and Information in Database

Bottom-Up' Systems, Acceptance Test Phase

Project

1
2

3
4

5

6
7

8

9

10

Total

Percent

Agreement.

Rule-Based Deduction System

Agreement Disagreement Extra

1-0 3-3 2'

0-3 3-1 9
0-0 0-2 4

0-0 3-1 0

3-0 3-0 5

1-1 0-2 • 2
3-2 1-0 3

l-0 4-3 1

1-0 0-3 2

0-1 7-1 3

10- 7 26- 16 31

Explicit 28% (10/36)

Marginal 30% (7/23)

Combined 29% (17/.59)

Frame-Based Abduction System

Agreement Disagreement Extra

1-0 3-3 2

0-2 3-2 3
0-0 0-2 4

0-0 3-1 0

3-0 3-0 5

l-I 0-2 2
1-0 3-2 1

1-0 4-3 1

1-0 2-3 1
0-1 7-1 3

8- 4 28- 19 2"2

22% (8/36)
17% (4/23)
20% (12/59)

Table 4.2a- Agreement between Expert System and Information in Database

Top-Down Systems, Early Coding Phase

Project

l

2

3

4
5

6
7

8

9
I0

Total

Percent

Agreement

Rule-Based Deduction System

Agreement Disagreement Extra

0-0 1-2 2

0-1 2-1 5

0-0 0-1 5

0-0 4-0 0
1-0 1-0 3

0-1 1-1 2

0-1 2-0 2
0-0 1-2 0

0-2 1-1 6
3-0 2-0 4

4 - 5 15 - 8 29

Explicit 21% (4/19)
Marginal 38% (5/13)

Combined 28% (9/32)

Frame-Based Abduction System

Agreement Disagreement Extra

0-0 1-2 2

0-1 2-1 "2

0-0 0-1 1
0-0 4-0 0

0-0 2-0 2

0-1 1-1 2
0-1 2-O 2

0-0 1-2 0
0-0 1-3 2

2-0 3-0 1

2- 3 17- 10 14

11%(2/19)
23% (3/13)

16%(5/32)

14

2-50

!

,!

!

Table 4.2b - Agreement between Expert System and Information in Database

Top-Down Systems, Middle Coding Phase

l
I
I
I
i

!
ii

Project

1

2

3
4

5

6
7

8

9

10

Total

Percent

Agreement

Rule-Based Deduction System

Agreement Disagreement Extra

I-1 1-1 6

0-0 2-3 0

0-1 0-1 7

0-0 2-0 1
0-0 4-0 0

1-2 0-1 6

0-0 2-2 4

2-1 2-2 0
0-1 2-2 3

5-O 1-2 3

9 - 6 16- 14 30

Explicit 36% (9/25)
Marginal 30% (6/20)

Combined 33% (15/45)

Frame-Based Abduction System
Agreement Disagreement Extra

0-0 2-2 4

0-0 2-3 0

0-1 0-1 3
0-0 2-0 1

0-0 4-0 0

0-0 1-3 1

0 0 o_,, o

2-0 2-3 0

0-1 2-2 3
3-0 3-2 2

5 - 2 20 - 18 16

200"/o(5/25)
10%(2/20)
16%(7/45)

Table 4.2c - Agreement between Expert System and Information in Database

Top-Down Systems, Late Coding Phase

Project

1

2
3

4
5

6

7
8

9
10

Total

Percent

Agreement

Rule-Based Deduction System

Agreement Disagreement Extra

1-I 2-1 6

1-3 1-1 8

0-0 0-2 0
1-0 2-1 1

0-0 5-0 3

1-2 0-1 5

0-0 4-2 2
2-1 3-2 1

0-1 1-1 3
1-0 6-2 3

7 - 8 24- 13 32

ExpLicit 23°/0 (7/31)

Marginal 38% (8/21)

Combined 29% (15/52)

Frame-Based Abduction System

Agreement Disagreement Extra

0-0 3-2 4

0-2 2-2 1
0-0 0-2 0

1-0 2-1 1
0-0 5-0 3

0-1 1-2 2

0-0 4-2 2
1-0 4-3 0

0-0 1-2 1
0-0 7-2 1

2 - 3 29 - 18 15

6% (2/31)
14% (3/21)

10% (5/52)

15

2-51

Table 42d - Agreement between Expert System and Information in Database
Top-Down Systems, Systems Test Phase

I

I
i

Project

1

2

3

4
5

6
7

8

9
10

Total

Percent

Agreement

Rule-Based Deduction System
Agreement Disagreement Extra

1-1 2-1 5

1-3 1-0 8
0-0 0-0 0

1-0 2-1 3

0-0 5-0 3
0-1 l-I 5

0-1 t-1 4

l - 0 ,1 - 3 0

0-1 ')- 1 5
1 -0 5- ') 3

5 - 7 26- l0 36

Explicit 16% (5/31)
Marginal -t1% (7//'17)

Combined 25% (12/4,8)

Frame-Based Abduction System

Agreement Disagreement Extra

1-0 2-2 4

0-0 2-3 2

0-0 0-0 0
0-0 3-1 1

0-0 5-0 3

0-0 1-2 3

0-0 4-2 3

1-0 4-3 0
0-1 2-1 3

0-0 6-2 "2

2 - 1 29 - 16 21

6%(2/31)

6%(1/17)

6%(3/48)

Table 4.2e - Agreement between Expert System and Information in Database

Top-Down Systems, Acceptance Test Phase

Project

1
.)

3

4
5

6
7

8
9

10

Total

Percent

Agreement

Rule-Based Deduction System

Agreement Disagreement Extra

0-0 3- 2 5

I .o 1-0 8

0-0 0-0 1
0-0 2-1 0

1-0 4-0 6

0-0 1-1 1

1-1 3-1 4
1-1 2-2 0
0-0 2-1 2

0-0 5-2 3

4 - 4 23 - 10 30

Explicit 15% (4,_,)

Marginal 29% (4/14)

Combined 20% (8/41)

Frame-Based Abduction System

Agreement Disagreement Extra

0-0 3-2 5

0-1 °-1 0
0-0 0-0 1

0-0 2-1 0

1 - 0 4-0 3
0-0 1-1 1

1-1 3-1 4

1-1 ')-2 0
0-0 2-1 1

0-0 5-2 1

3- 3 24 - 11 16

_1% (3/27)
21%(3/14)
15%(6/41)

The expert systems performed moderately well given the following limitations: (I)

so much of the knowledge and relationships are unclear in this field, (2) the experts
themselves do not agree on much of the knowledge, (3) the expert systems used only five

16

2-52

!
i

i

i
i

I
i

!

!

n
l

l

l

l

l

l

l

variables and only nine metrics derived from these variables to achieve the list. of

interpretations, (4) the metrics used are not ideal, (5) many of the interpretations in the

database are subjective in nature and therefore may not always be correct, and (6) there
may be discrepancies between the interpretations of the particular phase and the overall

interpretations for the project.

The systems which were developed with the bottom-up approach performed better
than those developed with the top-down approach, and the rule-based deduction systems

performed better than the frame-based abduction systems. Both the bottom-ul5 and

top-down rule-based systems performed better than either of the frame-based systems.

The bottom-up rule-based system performed best, agreeing with an average of 36%

(ranging from 29% to 44% depending on time phase) of the combined (both explicit and
marginal) interpretations from the database, and the top-down rule-based system agreed

with an average of 27% (ranging from 20% to 33%) of the database conclusions. The

bottom-up frame-based system agreed with an average of 18% (ranging from 11% to
20%) of the database interpretations, and the top-down frame-based system agreed with

an average of 12% (ranging from 6% to 16._°_o)of the database conclusions. Interestingly,
both top-down systems and the bottom-up rule-based system agreed with more of the

marginal database interpretations than the certain database interpretations. The oppo-

site was true for the bottom-up frame-based system which agreed with an average of
17% of the more certain database conclusions and an average of 15.°/o of the less certain
conclusions. It should be pointed out that each expert system produced relatively con-

sistent results throughout its five time phases.

The bottom-up systems contained more relationships between manifestations and

interpretations than did the top-down systems. One might assume that the only reason

the bottom-up systems agreed with a higher percentage of the database conclusions was
that the bottom-up systems would list more interpretations for the same input manifes-

tations (test case). If it listed more interpretations, it would get more right by chance.
However, there was not that big a difference between the number of manifestations per

interpretation for the bottom-up systems which was 3.18 and the number for the top-

down systems which was 2.77. As mentioned before, during the top-down development,
the experts combined certain interpretations and dismissed others altogether during cer-

tain time phases so there were fewer interpretations for each phase. Although the intent
was to throw out inappropriate interpretations and make the top-down systems that

much better, the bottom-up systems still captured a higher percentage of correct rela-

tionships than did the top-down systems. The total number of interpretations listed by
the bOttom-up rule-based system was 276 in the 50 test cases. Of these, 95 were in

agreement with the database conclusions. The total number of interpretations listed by

the top-down rule-based system was 216, and of these, 59 agreed with the database con-
clusions. Therefore, the bottom-up rule-based system had an average of 34% (95/276)

correct interpretations out of all those listed, while the top-down rule-based system aver-
aged only 27% (59/218) correct interpretations.

It is interesting to observe that within both the bottom-up and top-down sets of

systems the frame-based system always provided a subset of the interpretations listed by

the rule-based system (although in 48% of the combined bottom-up and top-down cases,

the rule-based and frame-based systems listed the exact same interpretations). As stated

previously, the relationships between the manifestations and interpretations were identi-
cal in the frame-based and rule-based systems within each knowledge acquisition

approach used. Then, by the nature of the expert system methodologies, the rule-based

17

I
2-53

I

system always listed every interpretation associated with every input manifestation,
while the frame-based system only provided answers of minimum cardinality which

explained all of the manifestations. Since the relationships in the two systems were

identical, the frame-based systems could only list the exact same interpretations or a
proper subset of those listed by the rule-based systems. As a result, the frame-based

systems could not perform better than the rule-based systems with respect to agreement

with the database conclusions: The frame-based systems listed an average of 500"/o fewer
extra interpretations (ranging from 29,0"/0to 72,v'/o depending on time phase) for the

bottom-up approach and an average of 48_ fewer extra interpretations (ranging from

42_ to 53,_'0) for the top-down approach. However, it is better to have extra interpreta-
tions than to miss correct interpretations.

The results of using the Kappa statistic to evaluate the expert systems is shown in

Table 5. According to these results, the bottom-up rule-based system performed best
again, indicating better than chance agreement for more of the interpretations than the

other systems did..A few of the interpretations performed relatively well in all or most

of the expert systems. These were low productivity, loose management, error prone code,
and computer problems. The experts had fairly good agreement with each other and also

over time (between the bottom-up and the top-down approaches) on the manifestations

for loose management and error prone code. They agreed less on low productivity and

mostly disagreed on computer problems. The interpretations of low complexity, simple
system, and changes hard to make also did a little better than chance agreement. The

experts had fair agreement with each other and over time concerning changes hard to

make, but mostly disagreed over low complezity and simple system. It is interesting to
note that the interpretations involving testing performed better in both bottom-up sys-
tems than in the top-down systems in general. Perhaps testing is better understood

using a very environment-specific approach. Several of the interpretations did not per-
form well in any of the expert systems, doing worse than chance agreement in all or

most cases. These were high complexity (tough problem}, compute bound algorithm, good
solid code, lots of reused code, lots of testing, little testi,_g, lack of thorough testing, and
tight management.

6. DISCUSSION

The goal of this study was to determine whether it is possible to build useful expert
systems for software engineering. Some of the questions which we tried to resolve

involved determining how to do the knowledge acquisition and what type of expert sys-
tem methodology might be best suited for this field.

It was found that the major limitation to developing expert systems for software

engineering is the fact that much of the knowledge in this field is not well understood
yet. Knowledge was gathered from two experts who have had a great deal of experience

in this field, and it was found that they did not agree with each other about many of the
relationships we were trying to determine. Furthermore, they did not always agree with

themselves when looking at the data from a different point of view at a later date.

Two approaches to knowledge acquisition were used and compared. The bottom-

up approach produced better results than the top-down approach. This may well be
because the bottom-up approach is more environment-specific. Since the field of

18

2-54

I
i
I

I
I
I
I

I
I

I

I
I
i
i
i
I
I
I

m

I

i
I
I
I

I
i
I
i

I

I
I

I
I
i
I
I
i

, Table 5 - Kappa Statistic Values of Each Interpretation
in Each of the Four Expert Systdms

Interpretation
Bottom-Up Systems

RBD I FBA

Unstable Specifications 0.120 0.000

Low Productivity 0.270 -0.065

High Productivity 0.000 0.000

High Complexity (Tough Problem) -0.261 -0.236

Compute Bound Algorithm -0.139 -0.154
Low Complexity 0.122 -0.066

Simple System 0.121 0:124
Error Prone Code 0.178 0.118
Good Solid Code -0.134 -0.174

Lots of Reused Code -0.121 -0.109

Lots of Testing -0.040 0.000
Little Testing 0.051 -0.144

Good Testing 0.231 0.296
Poor Testing 0.186 0.188

Lack of Thorough Testing -0.190 -0.061

Changes Hard to Make 0.000 -0.092
Loose Management 0.124 0.123

Tight Management -0.062 -0.114

Computer Problems 0.235 0.091

Lots of Terminal Jockeys 0.049 -0.087

Top-Down Systems
RBD FBA

-0.065 -0.158

0.369 0.023

0.000 0.000
-0.346 -0.160

-0.253 -0.168

0.016 0.155

0.046 0.130
-0.372 -0.082

-0.075 -0.163
-0.273 -0.205

-0.308 -0.238
-0.326 -0.198

-0.241 -0.267

0.211 0.149
0.427 0.194

ak_k$ _k$_k

0.104 -0.092
0.052 0.107

Note - K > 0 indicates better than chance agreement; K _--- 0 indicates

ment; K < 0 indicates worse than chance agreement.
RBD - Rule-Based Deduction; FBA - Frame-Based Abduction

*** - these interpretations were not used in the top-down systems

chance agree-.

software engineering is still new, it is probably better to develop expert systems for one
homogeneous environment rather than trying to determine general truths across environ-
ments.

The two expert system methodologies, rule-based deduction and frame-based

abduction, were also compared with respect to ease of implementation and accuracy of
results. The initial knowledge was derived from empirical software engineering research

and organized in a table format, so the very first sets of simple rules and frames which
were not time-line specific were straightforward to develop. The situation became more

complex when the interpretations were made time-line specific. Each frame-based sys,

tern was divided into five systems based on time period because the second dimension of

time could not be incorporated into the frames in a reasonable manner. Furthermore, an
attempt was made to rewrite the rules to contain more meaningful and complex relation-

ships among the manifestations in the antecedents. However, it was decided to retain

the format of simple rules in order to be as complete as possible. It should be noted that
for this type of diagnostic problem in a well-defined domain, it is generally much easier

and more natural to write frames than to encode the same information in complex rules-

19

2-55

[Ramsey86].

In 48..c;0of the cases, the rule-based and frame-based systems provided the same

interpretations. However, when analyzing the results from all projects, the rule-based
systems provided more interpretations and exhibited a higher rate of agreement with the

database than did the frame-based-systems. This is directly attributable to two facts:

(1) simple rules were used in the rule-based systems, allowing completeness of the list of

interpretations, .and (2) the frame-based systems only provide those explanations of

"minimum cardinality. Therefore, we conclude that the rule-based system with simple
rules is probably more applicable to the field of software engineering at this point in

time. However, this may very well not be true in the filture, as more is learned in this
field.

The expert systems performed moderately well, especially when one considers that

many of the relationships between the metrics and the interpretations are unclear. Tile

experts did not agree on many of the relationships, and the expert systems cannot per-

form better than the information included in them. Indeed, the bottbm-up rule-based
system performed about as well as the experts agreed with each other. In addition, a
relatively small number of metrics were used to suggest many interpretations, and the

metrics used we're not ideal. The experts felt that some of the interpretations could not
be adequately described in terms of the available metrics. For example, it was felt that

the complexity interpretations could not be adequately captured without error metric

data. The experts even threw out one of the interpretations altogether when they were
determining relationships using the top-down approach. However, the five variables

used in the metrics were easily obtainable, and this is also an important factor when
creating expert systems.

Another fact we would like to stress is that th'e expert systems for the earlier time
phases also performed well. This is especially important because a manager should learn

of potential problems as early in the development process as possible. Expert systems

can be very helpful because they may detect problems which a manager may not recog-
nize early on.

This study has provided many additional new insights into the development of

expert systems for software engineering. It is feasible to develop prototype expert sys-

tems at this point in 'time, but we need to define better the relationships that exist
between the components. In particular one must define what development characteris-

tics would result in what types of abnormal measures, how this changes through various
project development phases, and how certain one "is that an abnormal measure results

from a certain characteristic. As more is learned in this area, more can be incorporated
into useful expert systems.

7. FUTURE RESEARCH DIRECTIONS

The development of ARROWSMITH-P was a preliminary attempt at constructing

expert systems for software engineering management. The information contained in the
knowledge base can be refined, and new knowledge, such as information about error

metrics [Weiss85], [Basili84a], can be incorporated into these systems as more is learned.

As incorrect relationships are brought to the surface, the systems can be changed to
incorporate the knowledge gained from testing. Eventually, the rules should become

2O

2-56

!

!

I

u
II

II

II

I
II

m

l

I

I

l
I

II

I

I

I

I
I
I
I
I
I
i
l
I
i

I

1
I
I
I
1
I
I
i

more complex as relationships between manifestations and causes become better defined.

In addition, the testing of current, ongoing projects can be performed on the expert sys-

tems. The data from the new projects can then be incorporated into the environment-

specific baselines of metrics so the systems continue to be updated as the e.nvironment

changes.

In a more general sense, a theoretical framework for developing expert systems for

software engineering is needed. For example, a categorization scheme, which would

address such issues as when a top-down system is better than a bottom-up system and
vice versa, should be built. Also, perhaps a new and different type of inference mechan-

ism or method for building expert systems would better suit the needs of some aspects in

this field. All of these issues require _ great deal of further research and analysis.

8. ACKNOWLEDGEMENT

The authors are grateful to Frank McGarry, Dr. Jerry Page, Dr. James Reggia,

James Ramsey, Bill Decker, and Dave Card for their invaluable assistance in this pro-
ject. The authors would also like to thank the members of their research group for

enlightening comments and ideas.

21

2-57

References

[Basili77]
" Basili, V. R., M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr., W. F.

Truszkowski, and D. M. Weiss, The Software Engineering Laboratory, SEL-

77-001, Software Engineering Laboratory, NASA/Goddard Space Flight

Center, Greenbelt,Maryland, May 1977.

[Basili78]
Basili, V. R. and M. V. Zelkowitz, Analyzing Medium-Scale Software

Developments, pp. I16-123 in Proceedings of the Third International Confer-
ence on Software Engineering, Atlanta, Georgia, May 1978.

[Basili84a]
Basili, V. R. and B. T. Perricone, Software Errors and Complexity: An Em-

pirical Investigation, Communications of the AC_I27, 1, pp. 42-52, Jan.
1984.

IBasili84b]
Basili, V. R. and D. M. Weiss, A Methodology for Collecting Valid Software

Engineering Data, IEEE Transactions on Software Engineering SE-IO, 6, pp.
728-738, Nov. 1984.

[Basili85)
Basili, V. R. and C. L. Ramsey, ARROWSMITH-P - A Prototype Expert Sys-

tem for Software Engineering Management, pp. 252-264 in Proceedings of the

Expert Systems in Government Symposium, IEEE, McLean, Virginia, October
1985.

[Cam pbel1821
Campbell, A. N., V. F. Hollister, R. O. Duda, and P. E. Hart, Recognition of

a Hidden Mineral Deposit by an Artificial Intelligence Program, Science 217,

pp. 927-928, 3 September 1982.

[Card821
Card, D. N., F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili, The

Software Engineering Laboratory, SEL-81-104, Software Engineering Labora-

tory, NASA/Goddard Space Flight Center, Greenbelt,Maryland, Feb. 1982.

[Cohen681

Cohen, J., Weighted Kappa: Nominal Scale Agreement with Provision for
Scaled Disagreement or Partial Credit, Psychological Bulletin 70, pp. 213-220,
1968.

22

2-58

I

I
I

!
I
I

,I

I

I
l

I

I
I
I
I

I
I

I
i

I

I

i
i

i

I
I

!
i
l

I

I
l
I

!
I

I

l

IDoerflinger83t
Doerflinger, C. and V. Basili, Monitoring Software Development Through

Dynamic Variables, pp. 434-445 in Proceedings of the IEEE Computer

Society's International Computer Software and Applications Conference, Nov.

1983. (also to appear in IEEE Transactions on Software Engineering).

[Hayes-Roth78]

Hayes-Roth, F., D. Waterman, and D. Lenat, Principles of Pattern-Directed

Inference Systems, pp. 577-601 in Pattern-Directed Inference Systems, ed.

Waterman and Hayes-Roth, Academic Press, 1978.

IMiller821

IMinsky751

Miller, R., H. Pople, and J. Myers, Internist-l: An Experimental Computer-

Based Diagnostic Consultant for General Internal Medicine, New England

Journal of_ledicine 307, pp. 468-476, 1982.

Minsky, M., A Framework for Representing Knowledge, pp. 211-277 in The

Psychology of Computer Vision, ed. P. Winston, McGraw-Hill, Inc., 1975.

[Nau84]

Nau, D. S. and J. A. Reggia, Relationships Between Deducuve and Abductive

Inference in Knowledge-Based Diagnostic Expert Systems, pp. 500-509 in
Proceedings of the First International Workshop on Ecpert Database Systems,
1984.

[Pauker76]
Pauker, S. et al, Towards the Simulation of Clinical Cognition, American

Journal of _Iedicine 60, pp. 981-996, 1976.

iPeng84}
Peng, Y., A General Theoretical Model for Abductive Diagnostic Expert Sys-

tems, Tech. Report TR-1402, Computer Science Department, University of
Maryland, May 1984.

[Ramsey86]

Ramsey, C., J. Reggia, D. Nau, and A. Ferrentino, A Comparative Analysis

of Methods for Expert Systems, International Journal of Man-Alachine Stu-
dies, 1986. Accepted for publication.

iReggia82ai

Reggia, J. and B. Perricone, I_LMS Reference Manual, Tech. Report TR-1136,

Computer Science Department, University of Maryland, 1982.

[Reggia82b 1

Reggia, J., Computer-Assisted Medical Decision Making, pp. 198-213 in Ap-
plications of Computers in i_Iedicine, ed. _I. Schwartz, IEEE Press, 1982.

23

2-59

I

IReggia83a]
Reggia, J., D. Nau, and P. Wang, Diagnostic Expert Systems Based on a Set

Covering Model, International Journal of Man-Machine Studies, pp. 437-460,
Nov. 1983.

IReggia83bl

Reggia, J., D. Nau, and P. Wang, A Theory of Abductive Inference in Diag-
nostic Expert Systems, Teeh. Report TR-1338, Computer Sci. Dept., Univ. of

Maryland, College Park, MD, December 1983.

[SEL821

Annotated Bibliography of Software Engineering Laboratory (SEL) Litera-

ture, SEL-82-005, Software Engineering Laboratory, NASA/Goddard Space
Flight Center, Greenbelt,Maryland, Nov. 1982.

[Shortliffe76]
Shortliffe, E., Computer-Based Medical Consultations." AIYCIN, Elsevier.
1976.

iShubin82]

Shubin, H. and J. Ulrich, IDT: An Intelligent Diagnostic Tool, pp. 290-295 in

Proceedings of the National Conference on Artzficial Intelligence, AAAI,
1982.

[Spitzer67]

[Weiss85]

Spitzer, R., J. Cohen, J. Fleiss, and J. Endicott, Quantification of Agreement

in Psychiatric Diagnosis, Archives of General Psychiatry 17, pp. 83-87, 1967.

Weiss, D. M. and V. R. Basili, Evaluating Software Development by Analysis

of Changes: Some Data From the Software Engineering Laboratory, IEEE
Transactions on Software Engineering SE-11, 2, pp. 157-168, Fel_. 198.5.

24

2-60

I

I
I

I
i

I
,|'

I
I

I
I

1
!
I

I
I

I
I
I

I

I
I

i

i

1
I
I

I
i

I

I
I
I

I

I
I

I
I

AI)I_ENDLY la - A samDle interactive s_inn with th I.... A A ;^h

Tills EXPERT SYSTEM WILL IIELP A MANAGER OF A SOFTWARE PROJECT
DETERMINE IF TIlE PROJECT IS ON SCIIEDULE OR IN TROUBI.E.
PLEASE ANSWER TIlE FOLLOWING QUESTIONS.

COMPUTER RUNS PER LINE OF SOURCE CODE:
(1}ABOVE NORMAL

(2)NORMAL
(3)BELOW NORI_tAL
=?

2.

COMPUTER TIME PER LINE OF SOLq2CE CODE:
(1)ABOVE NORMAL

(-")NORMAL
(3)BELOW NORMAL
=?

2.

SOFTWARE CHANGES PER LINE OF SOURCE CODE:
(I)ABO',,q_ NORMAL

(-")NORNUtL

(3)BELOW NORMAL

=?

2.

PROGRAMMER HOURS PER LINE OF SOURCE CODE:
(1)ABOVE NORMAL
(-"}NORMAL

(3)BELOW NORMAL
=?

2.

COMPUTER TIME PER COMPUTER RUN:

(I)ABOVE NORMAL

(2)NORMAL

(3)BELOW NORMAL
=?

='2.

SOFTWARE CHANGES PER CO,_ff'UTER RUN:
(1)ABOVE NORMAL
(-")NORMAL

(3)BELOW NORMAL
=?

2.

PROGRAMMER HOURS PER COMPUTER RUN:

(1)ABOVE NORMAL
(2)NORMAL

(3)BELOW NORMAL
__.?

3.

PROJECT TIME PHASE:

(1)EARLY CODE PHASE

(2)MIDDLE CODE PHASE

(3)LATE CODE PHASE

(4)SYSTEMS TEST PHASE

(5)ACCEPTANCE TEST PHASE
=?

2.

COMPUTER TIME PER SOFTWARE CHANGE:
(1)ABOVE NORMAL

2-61

(2_NORMAL

(3)BELOW NORMAL
=?

.'2.

PROGRAMMER HOURS PER SOFTWARE CHANGE:

(1)ABOVE NORMAL-
(2)NORMAL

{3)BELOW NORMAL
=?

3.

• POSSIBLE INTERPRETATIONS ARE:
E[tROR PRONE CODE <0.94>

EASY ERRORS OR CHANGES BEING FOUND OR FIXED <0.81>
LOTS OF TESTING <0.7.5>

LOTS OF TERMINAL JOCKEYS <0.75>

UNSTABLE SPECIFICATIONS <0.50>
NEAR BUILD OR MILESTONE DATE <0.50>

GOOD TESTING OR GOOD TEST PLAN <0..'25>
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE

Note - User answers are in boldface.

2-62

<0.25>

I

I

I

I
i
I
,I

I

I

I
I

I
I
I

i

I

I

!

I

I

I
I

I
I

I
I

I
I
I

l
l

I

I
I
I
l

l
I

AU -- r_ _,lipL_ ir_t_ractive session with the frame-based abduction expert system.

THIS EXPERT SYSTEM WILL HELP A MANAGER OF A SOFTWARE PROJECT

DETERMINE IF THE PROJECT ISON SCHEDb_E OR IN TROUBLE.

THIS PARTICULAR SYSTEM SHOULD BE USED FOR THE MIDDLE CODING PHASE.

PLEASE ANSWER THE FOLLOWING QUESTIONS.

FOCUS'OF SUBPROBLEM:

-THIS SUBPROBLEM IS CURRENTLY ACTIVE*
GENERATOR:

COMPETING POSSIBILITIES:

UNSTABLE SPECIFICATIONS

LATE DESIGN

NEW OR LATE DEVELOPMENT

LOW PRODUCTIVITY

IIIGH PRODUCTIVITY

HIGH COMPLEXITY Ot{ T_)t , 'Ai Pf(()BI.EM

HIGH COMP OR COMP["TE 1¢(>t X;D ALGORITHMS RUN OR TESTED
LOW COMPLEXITY

SIMPLE SYSTEM
REMOVAL OF CODE Wf TE_I'ING OR TRANSPORTING

INFLUX OF TRANSPOBTI'D (t)DE
@

LITTLE EXECUTABLE C()DE BEING DEVELOPED
ERROR PRONE CODE
GOOD SOLID AND RELIABLE CODE

NEAR BUILD OR MILESTONE DATE
LARGE PORTION OF REUSED CODE OR EARLY AND LARGER TESTS

LOTS OF TESTING
LITTLE OR NOT ENOUG[{ ONLINE TESTING BEING DONE

GOOD TESTING OR GOOD TEST PLAN
UNIT TESTING BEING DONE

LACK OF THOROUGH TESTING
POOR TESTING PROGRAM

SYSTEM AND INTEGRATION TESTING STARTED EARLY
CHANGE BACKLOG OR HOLDING CHANGES
CHANGE BACKLOG OR HOLDING CODE

CHANGES HARD TO ISOLATE
CHANGES HARD TO MAKE

EASY ERRORS OR CHANGES BEING FOUND OR FIXED

MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED CODE
LOOSE CONFIGURATION MANAGEMENT OR UNSTRUCTURED DEV

TIGHT MANAGEMENT PLAN OR GOOD CONFIGLRRATION CONTROL
COMPUTER PROBLEMS OR INACCESSIBILITY OR ENV CONSTRAINTS

LOTS OF TERMINAL JOCKEYS

COMPUTER RUNS PER LINE OF SOURCE CODE:

(II ABO%'E NOR._t_L

(2)NORMAL

(3)BELOW NORMAL

COMPUTER TIME PER LINE. OF SOURCE CODE:

(1) ._BOVE NORMAL

(2) NORMAL

(3) BELOW NOR_tAL
--_?

2.

SOFTWARE CHANGES PER LIN_ OF SOURCE CODE:

(I)ABOVE NORMAL

(2) NORMAL

(3) BELOW NORMAL
=:

2.

2-63

pRc_GRAMMER HOURS PER LINE OF SOURCE CODE:

(1) ABOVE NORMAL

(2) NORMAL
(3) BELOW NORMAL
=?

SOFTWARE CtlANGES PER COMPUTER RUN:

(1) ABOVE NORMAL

(2) NORMAL
(a) BELOW NORMAL
=?

2.

COMPUTER TIME PER COMPUTER RUN:

(1) ABOVE NORMAL

(") NORMAL
(3) BELOW NORMAL
=?

PROGRAMMER HOURS PER COMPUTER RUN:

(1) ABOVE NORMAL

(2) NORMAL

(3) L_ELOW NORMAL
=.!

3.

FOCUS OF SUBPROBLEM:
GENERATOR:

COMPETING POSSIBILITIES:

LOTS OF TERMINAL JOCKEYS
EASY ERRORS OR CHANGES BEING FOUND OR FIXED

LOTS OF TESTING

ERROR PRONE CODE
UNSTABLE SPECIFICATIONS

PROGRAMMER HOURS PER SOFTWARE CHANGE:

(1) ABOVE NORMAL
(2) NORMAL

(3) BELOW NORMAL
=?

3.

FOCUS OF SUBPROBLEM:

GENERATOR:
COMPETING POSSIBILITIES:

EASY ERRORS OR CHANGES BEING FOUND OR FIXED

ERROR PRONE CODE

COMPUTER TIME PER SOFTWARE CHANGE:

(1) ABOVE NORMAL

(2/NORMAL
(3) BELOW NORMAL
=?

2.

POSSIBLE INTERPRETATIONS ARE:

EASY ERRORS OR CHANGES BEING FOUND OR FIXED <H>

ERROR PRONE CODE <L>

Note - User answers are in boldface.

- Both interpretations listed as solutions can explain all of the manifestations, but the first is

given a high measure of likelihood (shown by the <H>) of being correct, while Error Prone

Code is rated low.

2-64

I

!
I

I
I

l
I

I

I
l

I
l

I
I
I
I
I

I
I

!

I

_CURITY C_ASSIFICATION OF THIS PAG_
i i

t-_ REPORT SECURITY Ci.ASSIFICATION

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / EH3WNGRADING SCHEDULE

4. PERFORMING ORGANIZATION 'REPORT NUMB'ER(S)

TR-1708

i ii

REPORT DOCUMENTATION PAGE

lb. RESTRICTIVE MARKINGS

3. DISTRIBUTION / AVAILABILITY OF REPORT '

Distribution unlimited

S. MONITORIN'G ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION |6b. OFFICE SYMBOL

University of Maryland C

6c ADDRESS (City, State, and ZIPCode)

Department of Computer Science

College Park, MD 20742

8a. NAME OF FUNDING/SPONSORING JBb. OFFICE SYMBOL

ORGANIZATION • J (If applicable)NASA
ill

lk. ADORESSfCity,.St_te and.ZIPCo_) • • . , ,

Greenbelt, MD 20771

7a. NAME OF MONITORING ORGANIZATION

i

7b ADDRESS (City, Slate, and ZIP Code)

9. PROCUREMENT INSTRUMENT 'IDENTIFICATION N'LJMBER

11. TITLE (Incluo_e Security Classaficatlon) Unclassified

AN EVALUATION OF EXPERT SYSTEMS FOR SOFTWARE ENGINEERING MANAGEMENT

i i

12. PERSONAL AUTHOR(S)
Connie Loggia Ramsey and Victor R. Basili

i i i " | i •

COVERED I
13a. TYPE OF REPORT 113b. TIME 14. DATE OF REPORT (Year, Month, Day)

J, FROM r TO September 1986

16. SUPPLEMENTARY NOTATION

i

10., SOURCE=OF - FUNDING NUMBERS

ELEMENT NO. NO. . ACCESSION NO.

i

i ii

15 PAGE COUNT28

17 COSATI CODES J 18. SUBJECT TERMS (Coot/hue on _verse if necessa_ and m/entl_ by _ock number)

FIELD J GROUP,,,,, I SUB-GROUP I
19. ABSTRA'CT(Continue On reverie ifnecessa_ and iden_ by _ock numbed Although the field of software engineer-

ing is relatively new, it can benefit from the use of expert systems. Four

prototype expert systems have been developed to aid in software engineering management. Given

the values for certain metrics, these systems will provide interpretations which explain any

abnormal patterns of these values during the development of a software project. The four

expert systems, which solve the same problem, were built using two different approaches to

knowledge acquisition, a bottom-up approach and a top-down approach, and two different expert

system methods, rule-based deduction and frame-based abduction. A comparison was performed

to see which methods better suit the needs of this field. It was found that the bottom-up

approach led to better results than did the top-down approach, and the rule-based deduction

systems using simple rules provided more complete and correct solutions than did the

frame-based abduction systems.

20. DISTRIBUTION/'AVAIL_BILITY OF ABSTRACT T Jal. ABSTRACT SECURITY CLASSIFICATION ' 'I_IUNCLASSIFIED/UNLIMITED [-I SAME AS RPT. E] DTIC USERS

22a ConnieNAMEOF, Loggia"RESPONSIBLERamse_INDIVtDUAL ' L122b" 301-454.615ATELEPHONE(l'nclude Area Code) J 22'c OFFtCEcMscSYMBOL
I I I III

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other p_tion$ are obsolete.

2-65

(to appear in the IEEE TranJactionn on Software Engineering)

Comparing the Effectiveness of Software Testing Strategies

Victor R. B_ili

Department of Computer Science

Universityof Maryland

CollegePark, Maryland 20742

(301) 454-2002

Richard W. Selby

Department of Informationand Computer Science

Universityof California

[rvine,CA 92717

(714)856-6326
_w

August 1986

KEYWORD$:

software testing, functional testing, structural testing, code reading, off-lirte soft-

ware review,empiricalstudy,methodology evaluation,softwaremeasurement

R_-_areb. _,tpp,_ct.,I (a pact hy tit,..ktr F.,rc_. ()flick. ,,[_,:t,'_:_,: R,'-,_ae'b. (',,utr'xcr .-kF()_R-_igG?tl-..3,,-4'-J,q.. rite Y:trt,,tt_d

._.,_r,,ua,ttic._ tad 5pac_, ..k,hnini.tratt, m ,,r'mr N_Z_.S123 tll,t tit# r'taiv,,r-ity .f (7:dib,ruia F:ur,tlry R,_--:lr"h E'-lb,w-hip Pr,,tr:un.

C,,mp,tt,'r .,tpp,,rt prl,vl, l_| ill [,;,rr hy rh- .\..k__.k t,.,.l.lae, t "_W,,., _ Eli_ht C-nr,'r. the C.,mt,,tr,_r __,'_,m,',- 4'..urge _r rl_- r'lAt_'_r.t/y ..f

_[atylaad. m,t the ['uw,_r_iLv .,f _'"dtf,_rut:l

2-66

I

l

l
I
I

I
I

I

I
l
I
I

I
I
I
I

I

I

I

II
!

II

I
I

I
I

I

1

!

I
I

I
I
I
I

" ABSTRACT

This study applies an experimentation methodology to compare three state-of-the-

practice software testing techniques: (a) code reading by stepwise abstraction, (b) func-

tional testing using equivalence partitioning and boundary value analysis, and (c) struc-

tural testing using I00_ statement coverage criteria. The study compares the strategies

in three aspects of software testing: fault detection effectiveness, fault detection cost,

and classesof faultsdetected. Thirty two professionalprogrammers and 42 advanced

studentsappliedthe threetechniquesto fourunit-sizedprograms in a fractionalfactorial

experimentaldesign. The major resultsof thisstudy are the following. (t) With the

professionalprogrammers, code reading detected more software faultsand had a higher

faultdetectionrate than did functionalor structuraltesting,while functionaltesting

detected more faultsthan did structuraltesting,but functionaland structuraltesting

were not differentin faultdetectionrate. (2) [n one advanced student subjectgroup,

code reading and functionaltestingwere not differentin faultsfound,but were both su-

periorto structuraltesting,while in the other advanced student subjectgroup there was

no differenceamong the techniques. (3) With the advanced student subjects,the three

techniqueswere not differentin faultdetectionrate. (4) Number of faultsobserved,

faultdetectionrate,and totaleffortin detectiondepended on the type of software test-

ed. (5) Code reading detected more interfacefaultsthan did the other methods• (6)

Functional testingdetectedmore controlfaultsthan did the other methods. (7) When

asked to estimatethe percentageof faultsdetected,code readersgave the most accurate

estimates while functional testers gave the least accurate estimates.

2-67

Table of Contents

I Introduction ... t

2 Testing Techniques .. 2

2.1 Investigation Goals .. 3

3 Empirical Study ... 4

3.l Iterative Experimentation .. 4

3.2 Subject and Program/Fault Selection .. 4

3.2.1 Subjects ... S

3.2.2 Programs .. 6

3.2.3 Faults ... 7

3.2.3.1 Fault Origin ... 7

3.2.3.2 Fault Classification .. 8

3.2.3.3 Fault Description ... 9

3.3 Experimental Design .. 9

3.3.1 Independent and Dependent Variables .. t0

3.3.2 Analysis of Variance Model ... 11

3.4 Experimental Operation .. 13

4 Data Analysis ... 15

4.1 Fault Detection Effectiveness ... 1.5

4.1..1 Data Distributions ... 16

4.1.2 Number of Faults Detected .. [6

4.1.3 Percentage of Faults Detected ... _7

4.1.4 Dependence on Software Type ... 17

4.1..5 Observabie vs. Observed Faults ... 13

4.1.6 Dependence on Program Coverage .. 19

4.1.7 Dependence on Programmer Expertise .. 20

4.1..8 Accuracy of 5elf-Estimates :.. 20

4.1.9 Dependence on interactions ... 20

4.1..t0 Summary of Fault Detection Effectiveness .. 21

4.2 Fault Detection Cost ... 21

4.2.1 Data Distributions ... 22

4.2.2 Fault Detection Rate and Total Time ... 22

4.2.3 Dependence on Software Type ... 23

2-68

I

I-

I

I

i
I

I

I

I

I

t

I

I
I

I
I

I
I

I

!
I

I
!

I
I

I

I
I

I
!

1
I

I
!

I
I

4.2.4 Computer Costs ...

4.2.5 Dependence on Programmer Expertise ..

4.2.6 Dependence on [nteractiorts ...

4.2.7 Relationships Between Fault Detection Effectiveness and Cost

4.2.8 Summary of Fault Detection Cost ...

4.3 Characterization of Faults Detected ..

4.3.1 Omission vs. Commission Classification ..

4.3.2 Six-Part Fault Classification ..

4.3.3 Observable Fault Classification ...

4.3.4 Summary of Characterization of Faults Detected

5 Conclusions ...

6 Acknowledgement ..

7 Appendix. The Specifications for the Programs ..

8 References ..

2-69

24

24

25

25

25

26

26

27

27

28

28

31

33

38

1. Introduction

The processes of software testing and fault detection continue to challenge the soft-

ware community. Even though the software testing and fault detection activities are

inexact and inadequately understood, they are crucial to the success of a software pro-

ject. This paper presents a controtied study where an experimentation methodology was

applied to address the uncertainty of how to test software effectively, in this investiga-

tion, common testing techniques were applied to different types of software by subjects

that had a wide range of professional experience. This controlled study is intended to

evaluate different testing methods that are actually used by software developers, "state-

of-the-practice" methods, as opposed to state-of-the-art techniques.

This work is intended to characterize how testing effectiveness relates to several

factors: testing technique, software type, fault type, tester experience, and any interac-

tions among these factors. The study presented extends previous work by incorporating

different testing techniques and a greater number of persons and programs, while

broadening the scope of issues examined and adding statistical significance to the con-

clusions.

There are multiple perspectives from which to view empirical studies of software

development techniques, including the study presented in this paper.

• Experimenter - An experimenter may view the study as a demonstration of how a

software development technique (or methodology, tool etc.) can be empirical-

ly evaluated. Experimenters may examine the work as an example applica-

tion of a particular experimentation methodology that may be reused in fu-

ture studies.

• Researcher - A researcher may view the study as an empirical basis to refine

theories of software testing. Researchers formulate software testing theories

that have a horizon across multiple studies..ks a consequence, they examEne

data from a variety of sources and focus on data that either support or refute

proposed theories.

• Practitioner - A practitioner may view the study as a source of information about

which approaches to testing should be applied in practice. Practitioners may

2-70

I

I

I

I
l

l
I

I

I
I

i
I
I
I

I
I
I

I
I

I

I

I

i

I

I
I
I

I
i

I
I

I
I
I

I

I
I
I

focus on" the particular quantifications and comparisons provided by the

results. They then consider the relationship of the programs and program-

mers examined to the particular environment or projects in which the results

might be applied.

The following sections describe the testing techniques examined, the investigation

goals, the experimental design, operation, analysis, and conclusions.

2. Testing Techniques

To demonstrate that a particular program actually meets its specifications, profes-

sional softwaxe developerscurrentlyutilizemany differenttestingmethods. The con-

trolledstudy presented analyzes three common software testingtechhiques,which will

be referredto as functionaltesting,structuraltesting,and code reading. Beforepresent-

ing the goals for the empiricalstudy comparing the techniques,a descriptionwillbe

given of the testingstrategiesand theirdifferentcapabilities(seeFigure I.).[n func-

tionaltesting,which isa "black box" approach, a programmer constructstestdata from

the program's specificationthrough methods such as equivalencepartitioningand boun-

dary value analysis[.Myers79I. The programmer then executes the program and con-

trastsitsactualbehavior with that indicatedin the specification.In structuraltesting,

which isa "white box" approach iHowden 78a, Howden 81I,a programmer inspectsthe

source code and' then devisesand executes testcases based on the percentage of the

program's statements or expressionsexecuted (the "testsetcoverage") "$tucki77. The

structuralcoverage criteriaused was I00_ statement coverage. [n code reading by step-

wise abstraction,a person identifiesprime subprograms in the software,determines their

functions,and composes these functionsto determine a function forthe entireprogram

Mills 72, Linger,Mills & Witt 79i. The code readerthen compares thisderived func-

tionand the specifications(theintended function).

The controlledstudy presentedanalyzes,therefore,(I) the functionaltestingtech-

nique of using equivalenceclasspartitioningand boundary value analysis,(2)the struc-

turaltestingtechniqueof using i00_ statement coverage criteria,and (3) the code read-

ing techniqueof readingby stepwiseabstraction.Certainlymore advanced methods of

testingsoftwarehave been proposed (forexample, see Clarke 86i). The intentionof the

2-71

controlled study, however, is to apply an experimentation methodology to analyze test-

ing methods that are actually being used by developers to test software Zelkowitz et al.

841. Note that alternate forms exist for each of the three methods described, for exam-

ple, functional testing that takes into consideration the program design Howden 80al,

structural testing that uses branch or data flow criteria iFrankl & Weyuker 86 i, and

code reading in mufti-person inspections iFagan 76!. With the above descriptions in

mind, we will refer to the three testing methods as functional testing, structural testing,

and code reading.

2.1. Investigation Goals

The goals of this study comprise three different aspects of software testing: fault

detection effectiveness, fault detection cost, and classes of faults detected. An applica-

tion of the goal/question/metric paradigm Basili & Selby 84, Basili & Weiss 84: leads

to the framework of goals and questions for this study appearing in Figure 2.

The first goal area is performance oriented and includes a natural first question

([.A): which of the techniques detects the most faults inthe programs? The comparison

between the techniques is being made across programs, each with a different number of

faults. An alternate interpretation would then be to compare the percentage of faults

found in the programs (question [.A.1). The number of faults that a technique exposes

should also be compared: that is, faults that are made observable but not necessarily ob-

served and reported by a tester ([.A.2). Because of the differences in types of software

and in testers' abilities, it is relevant to determine whether the number of faults detect-

ed is either program or programmer dependent ([.B, [.C). Since one technique may find

a few more faults than another, it becomes useful to know how much. effort that tech-

nique requires ([I.A). Awareness of what types of software require more effort to test

(I[.B) and what types of programmer backgrounds require less effort in fault uncovering

(II.C) is also quite useful. If one is interested in detecting certain classes of faults, such

as in error-based tes'ting Foster 80, Valdes & Goel 83!, it is appropriate to apply a tech-

nique sensitive to that particular type (IlI.A). Classifying the types of faults that are

observable yet go unreported could help focus and increase testing effectiveness (HI.B).

3

2-72

|

I

I

I

I

I

I

I

I

I

I

I

i

I

I

I

I

I
I

I
I
I
i

I

I
I

I

I
I
I

I
I

I
I

P

3. Empirical Study

Admittedly, the goals stated here are quite ambitious. In no way is it implied that

this study can definitively answer all of these questions for all environments. [t is in-

tended, however, that the statistically significant analysis presented lends insights into

their answers and into the merit and. appropriateness of each of the techniques. Note

that this study compares the individual application of the three testing techniques in

order to identify their distinct advantages and disadvantages. This approach is a first

step toward proposing a composite testing strategy, which possibly incorporates several

testing methods. The following sections describe the empirical study undertaken to pur-

sue these goals and questions, including the selection of subjects, programs, and experi-

mental design, and the overall operation of the study. For an overview of the experi-

mentation methodology applied in this study, as well as a discussion of numerous soft-

ware engineering experiments, see iBasili, Selby & Hutchens 861.

3.1. Iterative Experimentation

The empiricalstudy consistedof threephases. The firstand second phases of the

study took placeat the Universityof Maryland in the Fallsof 1982 and 1983 respective°

[y. The thirdphase took placeat Computer SciencesCorporation (CSC - SilverSpring,

MD) and NASA Goddard Space FlightCenter (Greenbelt,MD) in the Fallof 1984.

The sequentialexperimentationsupported the iterativenature of the learningprocess,

and enabled the initialsetof goalsand questionsto be expanded and resolvedby further

analysis.The goalswere furtherrefinedby discussionsof the preliminaryresultsiSelby

83, Selby et al.84!. These three phases enabled the pursuitof resultreproducibility

acrossenvironments having subjectswith a wide range ofexperience.

3.2. Subject and Program/Fault Selection

A primary considerationin thisstudy was to use a realistictestingenvironment to

assessthe effectivenessof thesedifferenttestingstrategies,as opposed to creatinga best

possibletestingsituation:Hetzel7"8!.Thus, (I) the subjectsfor the study were chosen

to be representativeof differentlevelsof expertise,(2) the programs testedcorrespond

to different types of software and reflect common programming style, and (3) the fa.Lt[ts

in the programs were representative of those frequently occurring in software. Sampling

4

2-73

!

the subjects,programs, and faultsin this manner is intended to eva]uate the testing

methods reasonably,and to facilitatethe general[zationof the resultsto other environ-

ments.

3.2.1. Subjects

The three phases of the study incorporated a total of 74 subjects; the individual

phases had 29, 13, and 32 subjects respectively. The subjects were selected, based on

several criteria, to be representative of three different levels of computer science exper-

tise: advanced, intermediate, and junior." The number of subjects in each level of exper-

tise for the different phases appears in Figure 3.

The 42 subjects in the first two phases of the study were the members of the upper

level "Software Design and Development" course at the University of Maryland in the

Falls of 1982 and 1983. The individuals were either upper-level computer science majors

or graduate students; some were working part-time and all were in good academic

standing. The topics of the course included structured programming practices, function-

al correctness, top-down design, modular specification and design, step-wise refinement,

and PDL, in addition to the presentation of the techniques of code reading, functional

testing, and structural testing. The references for the testing methods were ;Mills 75,

Fagan 76, Myers 79, Howden 80a I, and the lectures were presented by V. R. Basili and

F. T. Baker. The subjects from the University of Maryland spanned the intermediate

and junior levels of computer science expertise. The assignment of individuals to levels

of expertise was based on professional experience and prior .academic performance in

relevant computer science courses. The individuals in the first and second phases had

overall averages of 1.7 (SD = 1.7) and 1.5 (SD = 1.5) years of professional experience.

The nine intermediate subjects in the first phase had from 2.8 to 7 years of professional

experience (average of 3.9 years. SD = 1.3), and the four in the second phase had from

2.3 to 5.5 years of professional experience (average of 3.2, SD = 1.5). The twenty junior

subjects in the first phases and the nine in the second phase both had from 0 to 2 years

professional experience (averages of 0.7, SD = 0.6, and 0.8, SD = 0.8, respectively).

The 32 subjects in the third phase of the study were programming professionals

from NASA and Computer Sciences Corporation. These individuals were mathemati-

2-74

I

l
I

l
I
I
i

I

I
I
I

I
I

I
I
I
I

I
l

I

I

I

I

I

I

I

l

I

i

I

I

I

I

I

l

I

I

l

clans, physicists, and engineers .that develop ground support software for satellites.

They were familiar with all three testing techniques, but had used functional testing pri-

marily. A four hour tutorial on the testing techniques was conducted for the subjects

by R. W. Selby. This group of subjects, examined in the third phase of the experiment,

spanned all three expertise levels and had an overall average of 1.0.0 (SD = 5.7) years

professional experience. Several criteria were considered in the assignment of subjects to

expertise levels, including years of professional experience, degree background, and their

manager's suggested assignment. The eight advanced subjects ranged from 9.5 to 20.5

years professional experience (average of 15.0, SD = 4.t). The eleven intermediate sub-

jects ranged from 3.5 to 17.5 years experience (average of 10.9, SD = 4.9). The thirteen

junior subjects ranged from 1.5 to 13.5 years experience (average of 6.1, SD = 4.4).

3.2.2. Programs

The experimentaldesign enablesthe distinctionof the testingtechniques while al-

lowing forthe effectsof the differentprograms being tested. The four programs used in

the investigationwere chosen to be representativeof severaldifferenttypes of software.

The programs were selectedspeciallyforthe study and were provided to the subjectsfor

testing;the subjectsdid not testprograms that they had written. All programs were

writtenin a high-levellanguage with which the subjectswere familiar.The three pro-

grams testedin the CSC/NASA phase were written in FORTRAN, and the programs

testedin the Universityof Maryland phaseswere writteninthe Simpl-T structuredpro-

grarnming language iBasili& Turner 76i.t The four programs testedwere PL) a texz

processor,P_) a mathematical plottingroutine,P3) a numeric abstract data type. and

P,) a database maintainer. The programs axe summarized in Figure 4. There exists

some differentiationin size.and the programs are a realisticsizet'orunit testing.Each

of the subjectstestedthree programs, but a totalof four programs was used acrossthe

three phasesof the study. The programs testedin each of the three phases of the study

appear in Figure 5. The specificationsforthe programs appear in the Appendix, and

t Simpl-T is a structured language that supports severalstringand filehandling

primitives,in addition to the usual controlflow constructs available,for example, in
Pascal.

6

2-75

their source code _ppears in :Basili & Selby 85, Selby 83:.

The first program is a text formatting program, which also appeared in i.X,[yers 78.

k version of this program, originally written by Naur 69, using techniques of program

correctness proofs, was analyzed in :Goodenough & Gerhart 751. The second program is

a mathematical plotting routine. This program was written by R. W. Selby, based

roughly on a sample program in rJensen & Wirth 74 i. The third program is a numeric

data abstraction consisting of a set of list processing utilities. This program was submit-

ted for a class project by a member of an intermediate level programming course at the

University of Maryland McMullin & Gannon 80]. The fourth program is a maintainer

for a database of bibliographic references. This program was analyzed in :HetzeI 76!,

and was written by a systems programmer at the University of North Carolina compu-

tation center.

Note that the source code for the programs contains no comments. This creates a

worst-case situation for the code readers. In an environment where code contained help-

ful comments, performance of code readers would likely improve, especially if the source

code contained as comments the intermediate functions of the program segments. In an

environment where the comments were at all suspect, they could then be ignored.

3.2.3. Faults

The faults contained in the programs tested represent a reasonable distribution of

faults that commonly occur in software rWeiss & Basili 85, Basili & Perricone 84 . .-k[l

the faults in the database maintainer and the numeric abstract data type were made

during the actual development of the programs. The other two programs contain a mix

of faults made by the original programmer and faults seeded in the code. The programs

contained a total of 34 faults; the text formatter had nine. the plotting routine had six.

the abstract data type had seven, and the database maintainer had twelve.

3.2.3.1. Fault Origin

The faults in the text formatter were preserved from the article in which it ap-

peared :.Myers 78!, except for some of the more controversial ones Cailliau & Rubin 79:.

In the mathematical plotter, faults made during program translation were supplemented

2-76

I
I

I
I

I
I
I

I
I
I

I

I
I
I
I
I

I
I

I

l

I

I

I

I

I

I

I

I

I

I
l

I
I

l

I

I
II

by additional representative faults. The faults in the abstract data type were the origi-

nal ones made by the program's author during the development of the program. The

faults in the database maintainer were recorded during the development of the program,

and then reinserted into the program. The next section describes a classification of the

different t>'pes of faults in the programs. Note that this investigation of the fault

detecting ability of these techniques involves only those types occurring in the source

code, not other types such as those in the requirements or the specifications.

8.2.8.2. Fault Classification

The faultsin the programs are classifiedaccording to two differentabstract

classificationschemes !Basili& Perricone84I. One faultcategorizationmethod separates

faultsof omission from faultsof commission. Faults of commission are those faults

presentas a resultof an incorrectsegment of existingcode. For example, the wrong ar-

ithmetic operator is used for a computation in the right-hand-sideof an assignment

statement. Faultsof omission are those faultspresentas a resultof a programmer's for-

gettingto includesome entityin a module.. For example, a statement ismissing from

the code that would assignthe proper valueto a variable.

A second faultcategorizationscheme partitionssoftware faultsinto the six classes

of (1) initialization, (2) computation, (3) control, (4) interface, (5) data, and (6) cosmet-

ic. Improperly initializing a data structure constitutes an initialization fault. For exam-

ple, assigning a variable the wrong value on entry to a module. Computation faults are

those that cause a calculation to evaluate the value for a variable incorrectly. The

above example of a wrong arithmetic operator in the right-hand-side of an assignment

statement would be a computation fault. A control fault causes the wrong control flow

path in a program to be taken for some input. An incorrect predicate in an IF-THEN-

ELSE statement would be a control fault. Interface faults result when a module uses

and makes assumptions about entities outside the module's local environment. Interface

faults would be, for example, passing an incorrect argument to a procedure, or assuming

in a module that an array passed as an argument was filled with blanks by the passing

routine. A data fault axe those that result from the incorrect use of a data structure.

For example, incorrectly determining the index for the last element in an array. Finally,

8

2-77

cosmetic faults are'clerical mistakes when entering the program. A spelling mistake in

an error message would be a cosmetic fault.

Interpreting and classifying faults in software is a difficult and inexact task. The

categorization process often requires trying to recreate the original programmer's

misunderstanding of the problem iJohnson, Draper ,_ Soloway 83 I. The above two fault

classification schemes attempt to distinguish among different reasons that programmers

make faults in software development. They were applied to the faults in the programs

in a consistent interpretation: it is certainly" possible that another analyst could have in-

terpreted them differently. The separate application of each of the two classification

schemes to the faults categorized them in a mutually exclusive and exhaustive manner.

Figure 6 displays the distribution of faults in the programs according to these schemes.

3.2.3.3. Fault Description

The faults in the programs are described in Figure 7. There have been various

efforts to determine a precise counting scheme for "defects" in software iGloss-Soler 79,

[EEE 83, Deprie 851. According to the IEEE explanations given, a software "fault" is a

specific manifestation in the source code of a programmer "error." For example, due to

a misconception or document discrepancy, a programmer makes an "error" (in his/her

head) that may result in more than one "fault" in a program. Using this interpretation.

software "faults" reflect the correctness, or lack thereof, of a program. A program input

may reveal a software "fault" by causing a software "'failure." k software "'failure" is

therefore a manifestation of a software "fault." The entities examined in this analysis

are software faults.

3.3. Experimental Design

The experimental design applied for each of the three phases of the study was a

fractional factorial design Cochran & Cox 30, Box, Hunter, & Hunter 78!. This experi-

mental design distinguishes among the testing techniques, while allowing for variation in

the ability of the particular individual testing or in the program being tested. Figure 8

displays the fractional factorial design appropriate for the third phase of the study.

Subject S L is in the advanced expertise level, and he structurally tested program Pl.

g

2-78

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

l

I

I

I
I

I
I

I
I
I

I

flancdonaliy tested _ program P3, and code read program P_. Notice that all of the sub-

jects tested each of the three programs and used each of the three techniques. Of

course, no one tests a given program more than once. The design appropriate for the

third phase is discussed in the following paragraphs, with the minor differences between

this design and the ones applied in the first two phases being discussed at the end of the

section.

3.3.1. Independent and Dependent Variables

The experimental design has the three independent variables of testing technique,

softwaxe type, and [eve[of expertise. For the design appearing in Figure 8, appropriate

for the third phase of the study, the three main effects have the following levels:

(1) testing technique: code reading, functional testing, and structural testing

(2) software type: (Pt) text processing, (P3} numeric abstract data type, and (P_) data-

base maintainer

(3) level of expertise: advanced, intermediate, and junior

Every combination of these levels occurs in the design. That is, programmers in all

three levels of expertise applied all three testing techniques on all programs. In addition

to these three main effects, a factorial analysis of variance (ANOVA) model supports

the emalysis of interactions among each of these main effects. Thus, the interaction

effects of testing technique * software type, testing technique " expertise level, software

type " expertise [evel, and the three-way interaction of testing technique * software type

" expertise level are included in the model. There are several dependent variables exam-

ined in the study, including number of faults detected, percentage of faults detected, to-

tal fault detection time, and fault detection rate. Observations from the on-line

methods of functional and structural testing also had as dependent variables number of

computer runs, amoun_ of cpu-time consumed, maximum statement coverage achieved,

connect time used, number of faults that were observable from the test data, percentage

of faults that were observable from the test data, and percentage of faults observable in

the from the test data that were actually observed by the tester.

10

2-79

I

3.3.2. Analysis of Variance Model

The three main effects and at[the two-way and three-way interactions effects are

called fixed effects in this factorial analysis of variance model. The levels of these effects

given above represent all levels of interest in the investigation. For example, the effect

of testing technique has as particular levels code reading, functional testing, and struc-

tural testing; these particular testing techniques are the only ones under comparison in

this study. The effect of the particular subjects that participated in this study requires

a little different interpretation. The subjects examined in the study were random sam-

ples of programmers from the large population of programmers at each of the levels of

expertise. Thus, the effect of the subjects on the various dependent variables is a ran-

dom variable, and this effect therefore is called a random effect. If the samples exam-

ined are truly representative of the population of subjects at each expertise level, the

inferences from the analysis can then be generalized across the whole population of sub-

jects at each expertise level, not just across the particular subjects in the sample chosen.

Since this analysis of variance model contains both fixed and random effects, it is called

a mixed model. The additive ANOVA model for the design appearing in Figure 8 is

given below iCochran & Cox 50, Box, Hunter, & Hunter 78:.

Tilkl = /z -- a i -- 3] -- _,k -- 6kl " a_] -- a'Tik -- 3'Tjk -- a3"_,iik -- eiikl

where

Tijkl is the observed response from subject 1 of experience level k using testing

technique i on program j

is the overall mean response

a i is the main effect of testing technique i (i = t.2,3)

3j is the main effect of program j (j = I, 3, 4)

"rk is the main effect of expertise level k (k = 1, 2, 3)

6k| is the random effect of subject I within expertise level k, a random variabte ([

= t,2 32:k= l, 2, 3)

a3ii is the interaction effect of testing technique i with program j (i = 1, 2, 3: j =

11

2-80

I

I
I

l
l

I
I

I
I

I
I

I
I

I
I
I

I
I
I

I

i

I

I

I
I
I

I
I

I
I

I
I

I
I
I

I
I

"1,a, 4)

a"likisthe interactioneffectof testin_technique iwith expertiselevelk (i= I,2.

3;k= L, 2,3)

,3"Tjk iS the interaction effect of program j with expertise level k (j = 1, 3, 4; k =

l, 2,3)

a3"Tiik is the interaction effect of testing technique i with program j with experi-

ence level k (i --=1, 2, 3; j = 1, 3, 4; k = 1, 2, 3)

_ijki is the experimental error for each observation, a random variable

The testsof hypotheseson allthe fixedeffectsmentioned above are referredto as F

tests[Scheffe$91. The F testsuse the error(residual}mean square in the denominator,

except forthe testof the expertiseleveleffect.The expected mean square forthe exper-

tiseleveleffectcontainsa component forthe actualvarianceof subjectswithinexpertise

level.In order to selectthe appropriateerrorterm for the denominator of the expertise

levelF test,the mean square for the effectof subjectsnested within expertiselevelis

chosen. The parameters for the random effectof subjectswithin expertiseLevelare as-

sumed to be drawn from a normally distributedrandom process with mean zero and

common variance. The experimental errorterms are assumed to have mean zero and

common variance.

The fractionalfactorialdesignappliedin the firsttwo phasesof the analysisdiffered

slightlyfrom the one presented above for the third phase} [n the third phase of the

study, programs PL, P3, and P4 were testedby subjectsin three levelsof expertise.In

both phases one and two, there were only subjectsfrom the levelsof intermediateand

juniorexpertise.In phase one, programs PL,P3, and P_ were tested. [n phase two. the

programs testedwere PI, P'-',and Pa. The only modificationsnecessaryto the above ex-

planationfor phases one and two are (I) eliminatingthe advanced expertiselevel,(2)

_"Although the data from allthe phases can be analyzed together,the number of

empty cellsresultingfrom not having allthreeexperiencelevelsand allfourprograms in

allphases limitsthe number of parameters thatcan be estimatedand causesnon-unique

Type [V partialsums of squares.

13

2-81

II

changing the program P subscripts appropriately, and (3) leaving out the three way in-

teraction term in phase two, because of the reduce_l number of subjects. [n all three of

the phases, all subjects used each of the three techniques and tested each of the three

programs for that phase. Also, within all three phases, all possible combinations of ex-

pertise level, testing techniques, and programs occurred.

The order of presentation of the testing techniques was randomized among the sub-

jects in each level of expertise in each phase of the study. However, the integrity of the

results would have suffered if each of the programs in a given phase was tested at

different times by different subjects. Note that each of the testing sessions took place on

a different day because of the amount of effort required. If different programs would

have been tested on different days, any discussion about the programs among subjects

between testing sessions would have affected the future performance of others. There-

fore, all subjects in a phase tested the same program on the same day. The actual order

of program presentation was the order in which the programs are listed in the previous

paragraph.

3.4. Experimental Operation

Each of the three phases were broken into _ve distinct pieces: training, three test-

ing sessions, and a follow-up session. All groups of subjects were exposed to a similar

amount of training on the testing techniques before the study began..-ks mentioned ear-

lier, the University of Maryland subjects were enrotled in the "'Software Design and De-

velopment" course, and the NASAt C$C subjects were given a four-hour tutorial. Back-

ground information on the subjects was captured through a questionnaire. Elementary

exercises followed by a pretest covering all techniques were administered to all subjects

after the training and before the testing sessions. Reasonable effort on the part of the

University of Maryland subjects was enforced by their being graded on the work and by

their rteeding to use the techniques in a major class project. Reasonable effort on the

part of the NASA/CSC subjects was certain because of their desire for the s_udy's out-

come to improve their software testing environment. All subjects groups were judged

highly motivated during the study. The subjects were all familiar with the editors, ter-

minals, machines, and the programs' implementation language.

13

2-82

!

!

!

I
I

I
I

I,

I
I
I

I

I
I
t
I

I
I

I

I

I
I

I

I
I
I

I
l
I

l

I
I
I

l
I

I
l

The individuals were requested to use the three testing techniques to the best of

their ability. Every sdbject participated in all three testing sessions of his/her phase.

using all techniques but each on a separate program. The individuals using code read-

ing were each given the specification for the program and its source code. They were

then asked to apply the methods of code reading by stepwise abstraction to detect

discrepancies between the program's abstracted function and the specification. The

functional testers were each given a specification and the ability to execute the program.

They were asked to perform equivalence partitioning and boundary value analysis to

select a set of test data for the program. Then they executed the program on this col-

lection of test data, and inconsistencies between what the program actually performed

and what they though the specificationsaiditshould perform were noted. The struc-

turaltesterswere given the sourcecode forthe program, the abilityto execute it.and a

descriptionof the input format for the program. The structuraltesterswere asked to

examine the source and generate a set of testcases that cumulatively execute t00% of

the program's statements. When the subjectswere applying an on-linetechnique,they

generated and executed theirown testdata;no testdata setswere provided. The pro-

grams were invoked through a testdriverthat supported the use the of multipleinput

data sets. This testdriver,unbeknown to the subjects,drained offthe input cases sub-

mitted to the program for the experimenter'slateranalysis:the programs could only be

accessedthrough a testdriver.

A structuralcoverage toolcalculatedthe actualstatement coverage of the r.estset

and which statements were leftunexecuted for the structuraltesters.3 After the struc-

turaltestersgenerated a collectionof testdata that met (oralmost met) the 100C_ cov-

erage criteria,no furtherexecution of the program or referenceto the source code was

allowed. They retained the program's output from the testcases they had generated.

These testerswere then provided with the progr._m'sspecification.Now that they knew

Program statements withinthe body of a WHILE statement were consideredunex-

ecuted ifthe boolean conditionof the WHILE statement was false.Having the boolean

conditionof the WHILE statement become trueat some point was a prerequisiteforex-

ecutingthe statements with the body of the WHILE.

I,4

2-83

!

what the program was intended to do, they were asked to contrast the program'_

specification with the behavior of the program on the test data they derived. This

scenario for the structural testerswas necessary so that "'observed" faultscould be com-

pared.

At the end of each of the testing sessions, the subjects were asked to give a reason-

able estimate of the amount of time spent detecting faults with a given testing tech-

nique. The University of .Maryland subjects were assured that this had nothing to with

the grading of the work. There seemed to be little incentive for the subjects in any of

the groups not to be truthful. At the completion of each testing session, the

NASA,"CSC subjects were also asked what percentage of the faults in the program that

they thought were uncovered. After all three testing sess[ons in a given phase were

completed, the subjects were requested to critique and evaluate the three testing tech-

niques regarding their un_ierstandability, naturalness, and effectiveness. The University

of Maryland subjects submitted a written critique, while a two hour debriefing forum

was conducted for the NASA CSC individuals. [n addition to obtaining the impressions

of the individuals, these follow-up procedures gave an understanding of how well the

subjects were comprehending and applying the methods. These final sessions also

afforded the participants an opportunity to comment on any particular problems they

had with the techniques or in applying them to the given programs.

4. Data Analysis

The analysis of the data collected from the various phases of the experiment

presented according to the goal and question framework discussed cartier.

4.1. Fault Detection Effectiveness

The first goal area addresses the fault detection effectiveness of each of the _ech-

niques. Figure 9 presents a summary of the measures that were examined to pursue this

goal area. A brief description of each measure is as follows: an asterisk (') means only

relevant for on-line testing.

(a) _ Faults detected = the number of faults detected by a subject applying a given

testing technique on a given program.

(b) _ Faults detected = the percentage of a program's fau}ts that a subject detected

15

2-84

I
I

|
I

I
i
I
I

|
I

I

i
I
I
I
I

I
|

I

i

I

I
I

I
I
I

I
i

I
I

I
I
l

i
I

I

I

by applying a testing technique to the program.

(c) _ Faults observable (') = the number of faults that were observable from the

program's behavior given the input data submitted.

(d) % Faults observable (') = the percentage of a program's fau[ts that were observ-

able from the program's behavior given the input data submitted.

(e) % Detected/observable (*) = the percentage of faults observable from the

program's behavior on the given input set that were actually observed by a

subject.

(f) ,co Faults felt found -- a subject's estimate of the percentage of a program's faults

that he/she thought were detected by his/her testing.

(g) Maximum statement coverage (_) = the maximum percentage of a program's

statements that were executed in a set of test cases.

4.1.1. Data Distributions

The actual distribution of the number of faults observed by the subjects appears in

Figure 10, broken down by phase. From Figures 9 and 10, the large variation in perfor-

mance among the subjects is clearly seen. The mean number of faults detected by the

subjects is displayed in Figure 11, broken down by technique, program, expertise bevel,

and phase.

4.1.2. Number of Faults Detected

The first question under this goal area asks which of the testing techniques detected

the most faults in the progran_. The overall F-test of the techniques detecting an equal

number of faults in the programs is rejected in the first and third phases of the study

(a<.024 and a<.0001, respectively; not rejected in phase two, a>.05). Recall that the

phase three data was collected from 32 N,-kSA'CSC subjects, and the phase one data

was from 29 University of Maryland subjects. With "the phase three data, the contrast

of "'reading - 0.5 " (functional - structural)" estimates that the technique of code read-

ing by stepwise abstraction detected 1.24 more faults per program than did either of the

16

2-85

|

other technktues (d<.0001, c.i. 0.73 - t.75). _ Note that code reading performed well

even though the professional subjects' primary experience was with functional testing.

Also with the phase three data, the contrast of "functional - structural" estimates that

the technique of functional testing detected 1.11 more faults per program than did struc-

• tural testing (a<.0007, c.i. 0.52 - 1.70). In the phase one data, the contrast of "'0.,5 "

(reading + functional)' - structural" estimates that the technique of structural testing

detected 1.00 fault less per program than did either reading or functional testing

(a<.0065, c.i. 0.31 - 1.69). [n the phase one data, the contrast of "reading - function-

al" was not statisticallydifferentfrom zero (a>.05). The poor performance of structur-

altestingacrossthe phasessuggeststhe inadequacy of usingstatement coverage criteria.

The above pairsofcontrastswere chosen because they are linearlyindependent.

4.1.3. Percentage of Faults Detected

Since the programs testedeach had a differentnumber of faults,a qdestionin the

earliergoal/questionframework asks which technique detected the greatestpercentage

of faultsin the programs. The order of performance of the techniquesis the same as

above when the percentageof the programs' faultsdetected are compared. The overall

F-testsfor phases one and three were rejectedas before(a<.037 and c_<.000l respec-

tively;not rejected in phase two, a>.03). Applying the same contrasts as above: (a) in

phase three, reading detected 16.0% more faults per program than did the other tech.-

niques (a<.000l, c.i. 9.9 - 22.l), and functional detected tt.2,cr0 more fauks than did

structural (a<.003, c.i. 4.1 - 18.3); (b) in phase one, structural detected t3.2'_- fewer of

a program's faults than did the other methods (c_<.011. c.i. 3.5 - 22.9), and reading

and functional were not statistically different as before.

4.1.4. Dependence on Software Type

Another question in this goal area queries whether the number or percentage of

faults detected depends on the program being tested. The overall F-test that the

number of faults detected is not program dependent is rejected only in the phase three

4 The probably of Type [error is reported, the probability of erroneously rejecting
the null hypothesis. The abbreviation "c.i." stands for 95% confidence interval.

IT

2-86

I

I

I
I

i
I
I

I
I
I

I

I
I
I

I
I
I

I
I

I

I

I

I

l

l

I

l

I

I

I

I

I

I

I

l

I

I

data (r,_<.000!). Applying Tukey's multiple comparison on the phase three data reveals

that the most faults were detected in the abstract data type, the second most in the

text formatter, and the least number of faults were found in the database maintainer

(simultaneous a<.05). When the percentage of faults found in a program is considered,

however, the overall F-tests for the three phases are all rejected (a<.027, a<.01, and

a<.0001 in respective order). Tukey's multiple comparison yields the following order-

ingson the progra_,s(allsimultaneous a<.05). LR the phase one data,the orderingwas

(data type -_ plotter)> text formatter;that is,a higher percentage of faultswere

detected ineitherthe abstractdata type or the plotterthan were found in the textfor-

matter; there was no differencebetween the abstractdata type and the plotterin the

percentage found. [n the phase two data,the orderingof percentageof faultsdetected

was plotter> (textformatter-_database maintainer). [n the phase threedata, the ord-

eringof percentageof faultsfound inthe programs was the same as the number of faults

found, abstract data type > text formatter> database maintainer. Summarizing the

effectof the type of softwareon the percentageof faultsobserved:(I) the programs with

the highest percentage of their faultsdetected were the abstract data type and the

mathematical plotter,the percentage detected between these two was not statistically

different;(2) the programs with the lowestpercentageof theirfaultsdetected were the

textformatterand the database maintainer:the percentagedetected between these two

was not statisticallydifferentin the phase two data, but a higherpercentageof faultsin

the textformatterwas detected in the phase threedata.

4.1.5. Observable vs. Observed Faults

One evaluationcriteriaof the successof a software testingsessionisthe number of

faultsdetected. An evaluationcriteriaof the particulartestdata generated,however, is

the abilityof the testdata to revealfaultsin the program. A testdata set'sabilityto

revdalfaultsin a program can be measured by the number or percentageofa program's

faultsthat are made observablefrom executionon that input.5 Distinguishingthefaults

Test data "reveala fault"or "make a faultobservable"by making a faultbe man-

ifestedas a program failure(seethe explanationin the earliersectionentitledFault

18

2-87

I

observable in a p_ogram From the faults actually observed by a tester highlights the

differences in the activities of test data generation and program behavior examination.

As shown in Figure 8, the average number of the programs" faults observable was 68.0c_

when individuals were either functional testing or structurally testing. Of course, with a

nonexecuti0n-b_ed technique such as code reading, 100% of the faults are observable.

Test data generated by subjects using the technique of functional testing resulted in 1.4

more observable faults (a<.0002, c.i. 0.79 - 2,0L) than did the use of structural testing

in phase one of the study; the percentage difference of functional over structural was es-

timated at 20.0% (a<.0002, c.i. 11.2 - 28..8}. The techniques did not differ in these two

measures in the third phase of the study. However, just considering the faults that were

observable from the submitted test data, functional testers detected 18.5,_ more of these

observable faults than didstructural testers in the phase three data (a<.0016, c.i. 8.9 -

28.1); they did not differ in the phase one data. Note that all faults in the programs

could be observed in the programs' output given the proper input data. When using the

on-line techniques of functional and structural testing, subjects detected 70.3% of the

faults observable in the program's output. In order to conduct a successful testing ses-

sion, faults in a program must be both revealed and subsequently observed.

4.1,6. Dependence on Program Coverage

Another measure of the ability of a test set to reveal a program's faults is the per-

centage of a program's statements that are executed by the test set. "['he average max-

imum statement coverage achieved by the functional and structural testers was 97.0_.

The maximum statement coverage from the submitted test data was not statistically

different between the functional and structura_ testers (a>.05). Also. there was no

correlation between maximum statement coverage achieved and either number or per-

centage of faults found (a>.05).

Description). Since the analysis is focusing on the number of distinct software faults re-

vealed - and for purposes of readability - this paragraph uses the single word "'fault."

19

2-88

I

I,

I
I

I
i
I
I

I
I

I

I
I

I
I

I

t

I

I

i
I

I
I

I
I
I

l
l

I
I

I
I

I
I
I

I

I

4.!oT_ Dependence on Programmer Expertise

A finalquestioninthisgoal areaconcernsthe contributionof programmer expertise

to faultdetectioneffectiveness.[n the phase three data from the NASA_CSC profes-

sionalenvironment, subjectsof advanced expertisedetected more faultsthan did either

the subjectsof intermediateor juniorexpertise(a<.05). When the percentageof faults

detected iscompared, however, the advanced subjectsperformed betterthan the junior

subjects (ct<.05),but were not statisticallydifferentfrom the intermediatesubjects

(a>.05). The intermediateand juniorsubjectswere not statisticallydifferentin any of

.thethree phases of the study in terms ofnumber or percentagefaultsobserved. When

severalsubjectbackground attributeswere co.rrelatedwith the number of faultsfound,

total years of professionalexperience had a minor relationship(Pearson R - .22,

a<.05). Correspondence of performance with background aspectswas examined across

allobservations,and within each of the phases, includingprevious academic perfor-

mance for the Universityof .Maryland subjects.Other than the above, no relationships

were found.

4.1.8. Accuracy of Self-Estimates

Recallthat the NASA'CSC subjectsinthe phase threedata estimated,at the com-

pletionof a testingsession,the percentageof a program's faultsthey thought they had

uncovered. This estimation of the number of faultsuncovered correlatedreasonably

well with the actual percentage of faultsdetected (R = .57.c_<'..0001).Investigating

further,individualsusing the differenttechniqueswere able to give betterestimates:

code readers gave the best estimates (R = .79,c_<.0001),structuraltestersgave the

second best estimates (R - .57.r_<.0007),and functionaltestersgave the worst esti-

mates (no correlation,o_>.05).This lastobservationsuggeststhat the code readerswere

more certainof the effectivenessthey had inrevealingfaultsinthe programs.

4.JL.9. Dependence on Interactions

There were few significant interactions between she main effects of testing tech-

nique, program, and expertise [eve[. [n the phase two data, there was an interaction

between testing technique and program in both the number and percentage of faults

found (a<.0013. c_<.0014 respectively). The effectiveness of code reading increased on

2O

2-89

|

the text formatter." in the phase three data, there was a slight three-way interaction

between testing technique, program, and expertise level [or both the number and per-

centage of faults found (_<.05, c_<.04 respectively).

4.1.10. Summary of Fault Detection Effectiveness

Summarizing the major results of the comparison of fault detection effectiveness:

(i) in the phase three data, code reading detected a greater number and percentage of

faultsthan the other methods, with functional detecting more than structural;(2) in the

phase one data, code reading and functional were equally effective,while structural was

inferiorto both - there were no differences among the three techniques in phase two;

(3) the number of faultsobserved depends on the type of software: the most faults were

detected in the abstract data type and the mathematical plotter,the second most in the

text formatter, and (in the case of the phase three data) the least were found in the da-

tabase maintainer; (4) functionally generated test data revealed more observable faults

than did structurally generated test data in phase one, but not in phase three; (5) sub-

jects of intermediate and junior expertise were equally effectivein detecting faults,while

advanced subjects found a greater number of faults than did either group; and (6) self-

estimates of faults detected were most accurate from subjects applying code reading, fol-

lowed by" those doing structural testing, with estimates from persons functionally testing

having no relationship.

4.2. Fault Detection Cost

The second goal area examines the fault detection cost of each of the techniques.

Figure 12 presents a summary of the measures that were examined to investigate this

goal area. A brief description of each measure is as follows: an asterisk (') means only

relevant for on-line testing. All of the on-line statistics were monitored by the operating

systems of the machines.

(a) -_ Faults _ hour = the number of faults detected by a subject applying a given

technique normalized by the effort in hours required, called the fault detection

rate.

(b) Detection time = the total number of hours that a subject spent in testing a pro-

gram using a technique.

21

2-90

!

I
I

I
I

!
I

I
I

I
I

I

I
I

I

I

I

1

I

I

I

I

I
I

I
I

I
I

I
I

(c) Cpu-time ('_) = the cpu-time in seconds used during the testing session.

(d) Normalized cpu-time (*) = the cpu-time in seconds used during the testing ses-

sion, normalized by a factor for machine speed.';

(e) Connect time (*) = the number of minutes that a individual spent on-fine while

testing a program.

(0 # Program runs (*) = the number of executions of the program test driver; note

that the driver supported multiple sets of input data.

4.2.1. Data Distributions

The actual distribution of the fault detection rates for the subjects appears in Fig-

ure 1.3, broken down by phase. Once again, note the many-to-one differential in subject

performance. Figure 14 displays the mean fault detection rate for the subjects, broken

down by technique, program, expertise level, and phase.

4.2.2. Fault Detection Rate and Total Time

The first question in this goal area asks which testing technique had the highest

fault detection rate. The overall F-test of the techniques' having the same fault detec-

tion rate was rejected in the phase three data (a<.001.4), but not in the other two

phases (a>.0$). As before, the two contrasts of "'reading - 0.5 * (functional - struc-

tural)" and "'functional - structural" were examined to detect differences among the

techniques. The technique of code reading was estimated at detecting 1.49 more faults

per hour than did the other techniques in the phase three data (a<.0003, c.i. 0.75 -

2.23): The techniques of functional and structural testing were not statistically different

(a>.0$}. Comparing the total time spent in fault detection, the techniques were not

statistically different in the phase two and three data: the overall F-test for the phase

one data was rejected (a<.013). [n the phase one data, structural testers spent an es-

timated 1.08 hours less testing than did the other techniques (a<.004, c.i. 0.39 - 1.78),

while code readers were not statistically different from functional testers. Recall that in

In the phase three data, testing was done on both a VAX 11/780 and an iBM

4341. As suggested by benchmark comparisons :Church 84!, the VAX cpu-times were
divided by 1.6 and the IBM cpu-times were divided by 0.9.

22

2-91

phase one.'the str'uctura[testers observed both a lower number and percentage of the

programs' faults than did the other techniques.

4.2.3. Dependence on Software Type

Another question in this area focuses on how fault detection rate depends on soft-

ware type. The overall F-test that the detection rate is the same for the programs is re-

jected in the phase one and phase three data (_<.01 and o_<,0001 respectively); the

detection rate among the programs was not statistically different in phase two. Apply-

ing Tukey's multiple comparisons on the phase one data finds that the fault detection

rate was greater on the abstract data type than on the plotter, while there was no

difference either between the abstract data type and the text formatter or between the

text formatter and the plotter (simultaneous a<.0$). In the phase three data, the fault

detection rate was higher in the abstract data type than it was for the text formatter

and the database maintainer, with the text formatter and the database maintainer not

being statistically different (simultaneous oL<.05). The overall effort spent in fault

detection was different among the programs in phases one and three (_<.012 and

oL<.0001 respectively), while there was no difference in phase two. In phase one, more"

effort was spent testing the plotter than the abstract data type, while there was no sta-

tistical difference either between the plotter and the text formatter or between the text

formatter and the abstract data type (simultaneous _<.05). In phase three, more time

was spent testing the database maintainer than was spent on either the text formatter

or on the abstract data type, with the text formatter not differing from the abstract

data type (simultaneous a<.05). Summarizing the dependence of fault detection cost on

software type, (l.) the abstract data type had a higher detection rate and less total

detection effort tb.an did either the pIotter or the database maintainer, the latter two

were not different in either detection rate or total detection time: (2) the text formatter

and the plotter did not differ in fault detection rate or total detection effort: (3) the text

formatter and the database maintainer did not differ in fault detection rate overall and

did not differ in total detection effort in phase two, but the database maintainer had a

higher total detection effort in phase three; (4) the text formatter and the abstract data

type did not differ in total detection effort overall and did not differ in fault detection

rate in phase one, but the abstract data type had a hi_her detection rate in phase three.

23

2-92

I
I

I
I

I
I
I

I
I
I

I
I

I

I

l

I

I

I

I

I

I

I

I

l

I

I

I

I

I

I

4.2.4. Computor Costs

In addition to the effort spent by individuals in software testing, on-line methods

incur machine costs. The machine cost measures of cpu-time, connect time, and the

number of runs were compared across the on-line techniques of functional and structural

testing in phase three of the study. A nonexecution-based technique such as code read-

ing, of course, incurs no machine time costs. When the machine speeds are normalized

(see measure definitions above), the technique of functional testing used 26.0 more

seconds of cpu-time than did the technique of structural testing (a<.016, c.i. 7.0 -

45.0). The estimate of the difference is 29.6 seconds when the cpu-times are not normal-

ized (a<.012, c.i. 9.0 - 30.2}. Individuals using functional testing used 28.4 more

minutes of connect time than did those using structural testing (a<.O04, c.i. [1.7 -

43.1). The number of computer runs of a program's tesl; driver was not different

between the two techniques (a>.05). These results suggest that individuals using func-

tional testing spent more time on-line and used more cpu-time per computer run than

did those structurally testing.

4.2.5. "Dependence on Programmer Expertise

The relation of programmer expertise to cost of fault detection is another question

in this goal section. The expertise level of the subjects had no relation to the fault

detection rate in phases two and three (a>.05 for both F-tests). Recall that phase three

of the study" used 32 professional subjects with all three levels of computer science exper-

tise. In phase one, however, the intermediate subjects detected faults at a faster rate

than did the junior subjects (a<.005). The total effort spent in fau|t detection was not

different among the expertise levels in any of the phases (a>.05 for all three F-tests).

When all 74 subjects are considered, years of professional experience correlates positively

with fault detection rate (R = .41. a<.0002) and correlates slightly negatively with total

detection time (R = -.25, a<.03). These last two observations suggest that persons

with more years of professional experience detected the faults faster and spent less total

time doing so. Several other subject background measures showed no relationship with

fault detection rate or total detection time {a<.05). Background measures were exam-

ined across all subjects and within the groups of NASA/CSC subjects and University of

24

2-93

I

.Mary land subjects.-

f

4.2.6. Dependence on Interactions

There were few significant interactions between the main effects of testing tech-

nique, program, and expertise level. There was an interaction between testing technique

and software type in terms of fault detection rate and total detection cost for the phase

three data (a<.003 and a<.007 respectively). Subjects using code reading on the

abstract data type had an increasect fault detection rate and a decreased total detection

time.

4.2.7. Relationships Between Fault Detection Effectiveness and Cost

There were several correlations between fault detection cost measures and perfor-

mance measures. Fault detection rate correlated overall with number of faults detected

(R = .48, a<.000[), percentage of faults found (R = .48, c_<.0001), and total detection

_time (R = -.53, a<.0001), but not with. normalized cpu-time, raw cpu-time, connect

time, or number of computer runs (a>.05). Total detection time correlated with nor-

malized cpu-time (R = .36, a<.04) and raw cpu-time (R = .37, a<.04), but not with

connect time, number of runs, number of faults detected, or percentage of faults detect-

ed. The number of faults detected in the programs correlated with the amount of

machine resources used: normalized cpu-time (R = .47, a<.007), raw cpu-time (R = .52,

a<.002), and connect time (R = .49, c_<.003), but not with the number of computer

runs (a>.05). The correlations for percentage of faults detected with machine resources

used were similar. Although most of these correlations are minor, they suggest that (L)

the higher the fault detection rate. the more faults found and the less time spent in fault

detection; (2) fault detection rate had no relationship with use of machine resources: (3)

spending more time [n detecting faults had no relationship with the amount of faults

detected: and (4) the more cpu-time and connect time used, the more faults found.

4.:1.8. Summary of Fault Detection Cost

Summarizing the major results of the comparison of fault detection cost: (1) in the

phase three data, code reading had a higher fault detection rate than the other methods,
Q

with no difference between functional testing and structural testing; (2) in the phase one

25

2-94

I

I

I
l

l
I
I

I
I

I
I

I
I
I

I
I

I
I

I

and two data,the'threetechniqueswere not differentin faultdetectionrate:(3} in the

phase two and threedata, totaldetectioneffortwas not differentamong the techniques.

but in phase one lesseffortwas spent for structura[testingthan for the other tech-

niques,while readingand functionalwere not different;(4) faultdetectionrateand total

effortin detectiondepended on the type of software:the abstractdata type had the

highest detectionrate and lowest totaldetectioneffort,the plotterand the database

maintainer had the lowestdetectionrateand the highesttotal_letectioneffort,and the

text formatterwas somewhere in between depending on the phase;(5)functionaltesting

used more cpu-time and connect time than did structuraltesting,but they were not

differentin the number of runs; (6} in phases two and three,subjectsacrossexpertise

levelswere not differentin faultdetectionrateor totaldetectiontime, in phase one in-

termediate subjectshad a higher detectionrate:and (7} there was a moderate correla-

tionbetween faultdetectionrateand yearsof professionalexperienceacrossallsubjects.

4.3. Characterization of Faults Detected

The third goal area focuses on determining what classes of faults are detected by

the differenttechniques. In the earliersectionon the faultsin the software,the faults

were characterizedby two differentclassificationschemes: omission or commission, and

initialization,control,data. computation, interface,or cosmetic. The faultsdetected

acrossnilthreestudy phases are broken down by the two faultclassificationschemes in

Figure I5. The entriesin the figureare the average percentage (with standard devia-

tions)of faultsin a given classobserved when a particulartechnique was being used.

Note that when a subjecttesteda program that had no faultsin a given class,he she

was excluded from the calculationof thisaverage.

4.3.1. Omission vs. Commission Classification

When the faultsare partitionedaccording to the omission commission scheme.

there is a distinctionamong the techniques.Both code readersand functionaltesters

observed more omission faultsthan did structuraltesters(a<.001), with code readers

and functionaltestersnot being different(a>.05). Since a faultof omission occursas a

resultof some segment of code being leftout,you would not expect structurallygenerat-

ed testdata to findsuch faults.In fact.44_ of the subjectsapplying structuraltesting

26

2-95

found zero'faults of omission when testing a program, i distribution of the faults ob-

served according to this classification scheme appears in Figure 16.

4.3.2. Six-Part Fault Classification

When the faultsare divided according to the second faultclassificationscheme,

severaldifferencesare apparent. Both code reading and functionaltestingfound more

initializationfaultsthan did structuraltesting(a<.05), with code readingand function-

altestingnot beingdifferent(a>.05). Code readingdetected more interfacefaultsthan

did eitherof the other methods (a<.01), with no differencebetween functionaland

structuraltesting(ct>.05).This suggeststhat the code reading processof abstracting

and composing program functionsacross modules must be an effectivetechnique for

findinginterfacefaults.Functionaltestingdetected more controlfaultsthan did either

of the other methods (a<.01), with code reading and structuraltestingnot being

different(a>.05). Recallthat the structuraltestdata generation criteriaexamined is

based on determiningthe executionpaths in a program and derivingtestdata thatexe-

cute 100% of the program's statements. One would expect that more control path

faultswould be found by such a technique. However, structuraltestingdid not do as

wellas functionaltestingin thisfaultclass.The techniqueof code reading found more

computation faultstha.ndid structuraltesting(c_<.05),with functionaltestingnot being

differentfrom eitherof the other two methods (a>.05). The three techniqueswere not

statisticallydifferentin the percentage of faultsthey detected in eitherthe data or

cosmetic faultclasses(0>.05 forboth). A distributionof the faultsobservedaccording

to thisclassificationscheme appears in Figure 17.

4.3.3. Observable Fault Classification

Figure 18 displays the average percentage (with standard deviations) of faults from

each class that were observable from the test data submitted, yet were not reported by

the tester. T The two on-line techniques of functional and structural testing were not

different in any of the faults classes (a>.05). Note that there was only ore fault in the

The standard deviations presented in the figure are high because of the several in-

stances in which all observable faults were reported.

27

2-96

I

I
I

I
I
I
I

I
I
I

I

I
I
I
I

I
I

I
I

I

i

I

!
I

|
l

!
I
I
I
I

|
J

!
I
I
i
I

cosmetic c{&ss,

4.3.4. Summary of Characterization of Faults Detected

Summarizing the major results of the comparison of classes of faults detected: (t)

code reading and functional testing both detected more omission faults and initialization

faults than did structural testing; (2) code reading detected more interface faults than

did the other methods; (3) functional testing detected more control faults than did the

other methods; (4) code reading detected more computation faults than did structural

testing; and (5) the on-line techniques of functional and structural testing were not

different in any classes of faults observable but not reported.

5. Conclusions

This study compares the strategiesof code reading by step.wiseabstraction,func-

tionaltestingusing equivalenceclasspartitioningand boundary value analysis,and

structuraltestingusing t00% statement coverage. The study evaluatesthe techniques

across three data sets in three difl_erentaspects of software testing:fault detection

effectiveness,faultdetectioncost,and classesof faultsdetected. The threedata setsin-

volved a totalof 74 programmers applyingeach of the three testingtechniqueson unit-

sizedsoftware;therefore,the.analysisand resultspresentedwere based on observations

from a total of 222 testingsessions.The investigationis intended to compare the

differenttestingstrategiesin representativetestingsituations,using programmers with a

wide range ofexperience,differentsoftwaretypes,and common softwarefaults.

In thiscontrolledstudy, an experimentationmethodology was applied to compare

the effectivenessof three testingtechniques;for an overview of the experimentation

methodology, see Basili,Selby & Hutchens 86'. Based on our experience and observa-

tion iZelkowitzet al.84!,the three testingtechniques representthe high end of the

range of testingmethods that are actuallybeing used by developers to testsoftware.

The techniquesexamined correspond,therefore,to the state-of-the-practiceof software

testingrather than the state-of-the-art.As mentioned earlier,there exist alternate

forms foreach of the threetestingmethods.

28

2-97

There £re several perspectives from which to view empirica[studies of software de-

velopment techniques. Three example perspectives given were that of the experimenter,

researcher, and practitioner. One key aspect of the study presented, especially from an

experimenter's perspective, was the use of an experimentation methodology and a formal

statistical design. The actual empirical results from the study, which are summarized

below, may be used to refine a researcher's theories about software testing or to guide a

practitioner's application of the techniques.

Each of the three testing techniques showed some merit in this evaluation. The

major empirical results of this study are the following. (l) With the professional pro-

grammers, code reading detected more software faults and had a higher fault detection

rate than did functional or structural testing, while functional testing detected more

faults than did structural testing, but functional and structural testing were not

different in fault detection rate. (2) [n one University of Maryland (UoM) subject

group, code reading and functional testing were not different in faults found, but were

both superior to structural testing, while in the other UoM subject group there was no

difference among the techniques. (3) With the UoM subjects, the three techniques were

not different in fault detection rate. (4) Number of faults observed, fault detection rate,

and total effort in detection depended on the type of software tested. (5) Code reading

detected more interface faults than did the other methods. (.6) Functional testing

detected more control faults than did the other methods. (7) When asked to estimate

the percentage of faults detected, code readers gave the most accurate estimates wb.i[e

functional testers gave the [east accurate estimates.

The results suggest that code reading by stepwise abstraction (a nonexecution-

based method) is at least as effective as on-line functional and structural testing in

terms of number and cost of faults observed. They also suggest the inadequacy of using

100_ statement coverage criteria for structural testing. Note that the professional pro-

grammers examined preferred the use of functional testing because they felt it was the

most effective technique; their intuition, however, turned out to be incorrect. Recall

that the code reading was performed on uncommented programs, which could be con-

sidered a worst-case scenario for code reading.

29

2-98

0

i

|

I
!

!
I

!

I

i

I
S

!

&
W
I
,|
/
I

L

I

I

I

1
|
!

!
II

Ii
Ii
!
Ii
tl

[n comparing "the results to related studies, there are mixed conclusions. A proto-

type analysis done at the University of Maryland in the Fall of L981 Hwang 8L sup-

ported the belief that code reading by stepwise abstraction does as well as the

computer-based methods, _ _h each strategy having its own advantages. [n the Myers

experiment iMyers 78], the three techniques compared (functional testing, 3-person code

reviews, control group) _ere equally effective. He also calculated that code reviews were

less cost-effective than the computer-based testing approaches. The first observation is

supported in one study phase here, but the other observation is not. A study conducted

by Hetzel !Hetzel 76 i compared functional testing, code reading, and "selective" testing

(a composite of functional, structural, and reading techniques). He observed that func-

tional and "selective" testing were equally effective, with code reading being inferior.

As noted earlier, this is not supported by this analysis. The study described in this

analysis examined the technique of code reading by stepwise abstraction, while both the

Myers and [-Ietzel studies examined alternate approaches to off-line (nonexecution-

based) review/reading. Other studies that have compared the effectiveness of software

testing strategies include [Griffith & Henry 72i Jelinski & Moranda 731 :Gould &

Drongowski 741 'LGould751 :Howden 77; iBudd et al.781 :Howden 78b} iHowden 80b]

iWoodward, Hedley & Hennell 80! !Miller& Howden 811 iPanzl811 iGirgis& Woodward

861.

A few remarks are appropriateabout the comparison of the cost-effectivenessand

phase-availabilityof these testingtechniques. When examining the effortassociated

with a technique,both faultdetectionand faultisolationcosts should be compared.

The code readershave both detected and isolateda fault:they locateditin the source

code. Thus, the reading processcondenses faultdetectionand isolationintoone activi-

ty. Functional and structuraltestershave only detected a fault:they need to delve into

the sourcecode and expend additionaleffortin order to isolatethe fault..Moreover,the

code reading processcorresponds more closelyto the activityof program proving than

do the other methods. Also, a nonexecution-basedreading processcan be applied to

any document produced during the development process (e.g.,high-leveldesign docu-

ment, low-leveldesigndocument, sourcecode document). While functionaland struc-

turalexecution-based techniques may only be applied to documents that are executable

30

2-99

(e.g., sourc% code), which are usually available later in the development process.

investigations related to this work include studies of fault classification Weiss &

Basili 85, Johnson, Draper & Soloway 83, Ostrand & Weyuker 84, Basili & Perricone _4

and Cleanroom software development iSelby, Basili & Baker 861. In the Cleanroom soft-

ware development approach, techniques such as code reading are used in the develop-

meat of software completely off-line (i.e., without program execution). In the above

study, systems developed using Cleanroom met system requirements more completely

and had _ higher percentage of successful operational test .cases than did systems

developed with a more traditional approach.

The work presented in this paper differs from previous studies in several ways, in-

cluding the following. (1) The nonexecution-based software review technique used was

code reading by stepwise abstraction. (2) The study was based on programmers - in-

cluding professionals - having varying expertise, different software types, and programs

having a representative profile of common software faults. (3) .-k very sensitive statisti-

cal design was employed to account for differences in individual performance and in-

teractions among testing technique, software type. and subject expertise level. (4) The

study was conducted in multiple phases in order to refine experimentation methods. (5}

The scope of issues examined was broadened (e.g., observed vs. observable faults, struc-

tural coverage of functional testing, multiple fault classification schemes).

The empinca[study presented is intended to advance the understanding of how

various software testing strategies contribute to the software development process a,nd

to one another. The results given were calculated from a set of individuals applying the

three techniques to unit-sized programs - the direct extrapolation of the findings to

other testing environments is not implied. Further work applying these and other

results to devise effective testing environments is underway :Seiby 86.

6. Acknowledgement

The authors are grateful to F. T. Baker, F. E. McGarry and G. Page for their assis-

tance in the organization of the study. The authors appreciate the comments from R.

N. Taylor on an earlier version of this paper. The authors are grateful to the subjects

from Computer _ciences Corporat!on, NASA Goddard, and the University of ._[aryland

31

2-100

:

I

It
i

!
|,,
i

!
!
|
I

!
I
ii
i

_r "! ° w • ."

trteLr entnuslas_tc participation in the study.

32

2&lOl

?.

7. Appendix. The Specificationsfor the Programs

Program 1

Given an input text of up to 80 characters consisting of words separated by blanks

or new-line characters, the program formats it into a line-by-line form such that t) each

output line has a maximum of 30 characters, 2) a word in the input text is placed on a

single output line, and 3) each output line is filled with as many words as possible.

The input text is a stream of characters, where the characters are categorized as ei-

ther break or nonbreak characters. A break character is a blank, a new-line character

(&), or an end-of-text character (/). New-line characters have no special significance;

they are treated as blanks by the program. The characters & and / should not appear

in the output.

A word is de_ned as a nonempty sequence of nonbreak characters. A break is a se-

quence of one or more break characters and is reduced to a single blank character or

start of a new line in the output.

When the program is invoked, the user types the input line, followed by a / (end-

of-text) and a carriage return. The program then echos the text input and formats it on

the terminal.

If the input text contains a word that is too long to fit on a single output line, an

error message is typed and the program terminates. If the end-of-text character is miss-

ing, an error message is issued and the program awaits the input of properly terminated

line of text.

Program 9

Given ordered pairs (x,y) of either positive or negative integers as input, the pro-

gram plots them on a grid with a horizontal x-axis and a vertical y-axis which are ap-

propriately labeled. A plotted point on the grid should appear as an asterisk (').

Note that this specification was rewritten in iMeyer 85'.

88

2-102

!
I
!
B

!
l

!

!

,!

t
i
!

!
!
!

|

I
I
I
t
I
I
|
I
!1
i
I!
I1
.1!
II

II
!1
II

',',-.- • ,.:-_' and " -:.... ' ---"L,L_ ver_ Lo,L_un_,,i_caimg is handied as foiJows, if the maximum absolute

value of any y-value is less than or equal to twenty (20), the scale for vertical spacing

will be one Line per integral unit (e.g., the point (3,6) should be plotted on the sixth

line: two lines above the point (3,4)). Note that the origin (point (0,0)) would

correspond to an asterisk at the the intersection of the axes (the x-ax_ is referred to as

the 0th Hne). If the maximum absolute value of any x-value is less than or equal to

thirty (30), the scale for horizontal spacing will be one space per integral unit (e.g., the

point (4,5) should be plotted four spaces to the right of the y-axis; two spaces to the

right of (2,5)). However, if the maximum absolute value of any y-value is greater than

twenty (20), the scale for vertical spacing will be one line per every (max abs of

yval)/20 rounded-up. {e.g., If the maximum absolute value of any y-value to be plotted

is 66, the vertical line spacing will be a Line for every four (4) integral units. [n such a

data set, points with y-values greater than or equal to eight and less than twelve will

show up as asterisks in the second line, points with-y-values greater than or equal to

twelve and less than sixteen will show up as asterisks in the third line, etc. Continuing

the example, the point (3,15) should be plotted on the third line; two lines above the

point (3,5).) Horizontal scaling is handled analogously.

If two or more of the points to be plotted would show up as the same asterisk in

the grid (like the points (9,13) and (9,15) in the above example), a number "2' (or what-

ever number is appropriate) should be printed instead of the asterisk. Points whose as-

terisks will lie on a axis or grid marker should show up in place of the marker.

Program .9

A list is defined to be an ordered collection of integer elements which may have ele-

ments annexed and deleted at either end, but not in the middle. The operations that

need to be available are ADDFIRST, .%DDLAST, DELETEFIRST, DELETELA$T,

FIRST, ISEMPTY, LISTLENGTH. REVERSE. and NEWLIST. Each operation is

described in detail below. The lists are to contain up to a maximum of five (5) ele-

ments. [f an element _ added to the front of a "full" list (one containing five elements

already), the element at the back of the list is to be discarded. Elements to be added to

the back of a full list are discarded. Requests to delete elements from empty lists result

34

2-103

in an empty list, ;indrequestsfor the firstelement of an empty listresultsin zero (0)

being returned. The detailed operation descriptions are as below:

ADDFIRST(LIST L, INTEGER I)

Returns the list L with [as its first element followed by all the elements of L. If L

is "full" to begin with, L's last element is lost.

ADDLAST(LIST L, INTEGER [)

Returns the list with all of the elements of L followed by [.

with, L is returned (i.e., [is ignored).

DELETEFIRST(LIST L)

Returns the list containing all but the first element of L.

empty list is returned.

DELETELAST(LIST L)

Returns the list containin_ allbut the last element of L.

empty list is returned.

FIRST(LIST L)

Returns the first element in Lo If L is empty, then it returns zero (0).

[SEMPTY(LIST L)

Returns one (1) if L is empty, zero (0) otherwise.

LISTLENGTH(LIST L)

Returns the number of elements in L. An empty list has zero {0) elements.

NEWLIST(LIST L)

Returns an empty list.

REVERSE(LIST L)

Returns a list containing the elements of L in reverse order.

[fL is fuLL to be_[n

If L is empty, then an

[f L is empty, then an

Program -t

(Note that a 'file' is the same thing as an IBM 'dataset'.)

35

2-104

|

I

I,

I
I
I
i
!
I

I

I
l

mt

!
i

l
l
I
l
1,

!
!

i
I
!
i
t
I
!
|

o

The program maintains a database of bibliographic references. [t first reads a mas-

ter file of current references, then reads a file of reference updates, merges the two. and

produces an updated master file and a cross reference table of keywords.

The first input file, the master, contains records of 7,t characters with the following

format:

column comment

1 - 3 each referencehas a unique referencekey

4 - 14 author of publication

15 - 72 titleof publication

73 - 74 year issued

The key should be a three (3) character unique identifierconsistingof lettersbetween

A-Z. The next input file,the update file,contains recordsof 75 charactersin length.

The only differencefrom a master filerecordisthat an update recordhas eitheran 'A'

(capital A meaning add} or a 'R' (capital R meaning replace) in column 75. Both the

master and update files are expected to be already sorted alphabetically by reference key

when read into the program. Update records with action replace are substituted for the

matching key record in the master file. Records with action add are added to the mas-

ter file at the appropriate location so that the file remains sorted on the key field. For

exampte, a valid update record to be read would be (including a numbered fine just for

reference}

12345678901234567890123456789012345678901234567sgoI234567890123456789012345

BlTbaker an introduct ion to program test ing 83A

The program should produce two pieces of output. It should first print the sorted

list of records in the updated master file in the same format as the original master file.

It should then print a keyword cross reference list. All words greater than three charac-

ters in a publication's title are keywords. These keywords are listed alphabetically fol-

lowed by the key fields from the applicable updated master file entries. For example, if

the updated master file contained two records,

36

2-105

.-_Ckermit introduction to software testing _'2

[IKjones the realities of software rmnag_ent 8t

then the keywords are introduction, testing, realities, sgftware, and management.

cross reference list should look like

The

introduction

ABC

management

DDX

realities

DDX

software

ABC

DDX

testing

ABC

Some possibleerrorconditionsthat could ariseand the subsequent actionsinclude

the following.The master and update filesshould be checked for sequence, and ifa

recordout of sequence isfound,a message similarto 'key ABC out of sequence'should

appear and the record should be discarded. [fan update record indicatesreplaceand

the matcl_ingkey can not be found, a message similarto 'update key ABC not found'

should appear and the update recordshould be ignored. Ifan update recordindicates

add and a matching key isfound,something like'keyABC alreadyin _.[e"shoutd appear

and the recordshould be ignored. (End ofspecification.)

37

2-106

!

I
!

ii
!

ti
I
g
'I

i

!
i
g
l

I
N

I
!
I
I

I
i

8. Reference_

Basili& Perricone84;

V. R. Basiliand B. T. Perricone,Software Errors and Complexity: An Em-

pirical[nvestigation,Communications of the ACM 27, 1, pp. 42-52, Jan.
1984.

Basili & Selby 84i
V. R. Basili and R. W. Selby, Data Collection and Analysis in Software

Research and Management, Proceedings of the American Statistical Associa-

tion and Biometric Society Joint Statistical ,_eetings, Philadelphia, PA, Au-
gust t3-L6, L984.

!Basili & Selby 85:
V. R. Basili and R. W. Selby, Comparing the Effectiveness of Software Test-

ing Strategies, Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep.

TR-1501, May 1985. (submitted to the [EEE Trans. Software Engr.)

iBasili, Selby & Hutchens 86]

V. R. Basili, R. W. Selby, and D. H. Hutchens, Experimentation in Software

Engineering, Trans. Software Engr. SE-12, I, Jan. 1986. (to appear)

"Basili & Turner 76i

V. R. Basili and A. J. Turner, SIMPL.T: A Structured

Language, Paladin House Publishers, Geneva, IL, 1976.

Programming

Basili & Weiss 84!

V. R. Basili and D. M. Weiss. A Methodology for Collecting Valid Software

Engineering Data', Trans. Software Engr. SE-IO, 6, pp. 728-738, Nov. 1984.

Box, Hunter, & Hunter 781

G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Ezperimenter._,

John Wiley & Sons, New York, 1978.

Budd et al. 78i

T. A. Budd, R. J. Lipton, F. G. Sayward, and R. DeMillo, The Design of a

Prototype Mutation System for Program Testing, Proc. AF[PS Conf. 47,

pp. 623-627, 1978.

38

2-107

Cailliau& Rubin79}
R. Cailliauand F. Rub[n,ACM Forum: On a Controlled Experiment in Pro-

gram Testing, Communications o] the A CM 22, pp. 687-8, Dec. t979.

Clarke 86i

L. A. Clarke (Program Chair), Proe. Workshop on Software Testing, Banff,
Alberta, Canada, July 15-17. 1.986.

,iChurch 84 i
V. Church, Benchmark Statistics for the VAX 11,780 and the IBM 4341,

Computer Sciences Corporation, Silver Spring, MD, Internal _Memo, 1984.

Cochran & Cox 50!

W. G. Cochran and G. M. Cox, Experimental Designs. John Wiley & Sons,

New York, 1950.

Deprie $5 i
J. C. Deprie, Report from the IFIP Working Group on Terminology, Proe.

15th Annual international Symposium on Fault Tolerant Computing, Univer-
sity of Michigan, Ann Arbor, MI, June 19-21, 1985.

iFagan 76]
M. E. Fagan, Design and Code Inspections to Reduce Errors in Program De-

velopment, IBM Sys. J. 15, 3, pp. 182-211, 1976.

• iFoster 80,

K. A. Foster, Error Sensitive Test Cases, [EEE Trans. Software fnqr. SE-6.

3, pp. 258-264, 1980.

Frankl & Weyuker 86i

P. G. Frank[and E. J. Weyuker. Data Flow Testing in the Presence of

Unexecutabie Paths, Proc. Workshop on Software Testm 9, Banff. Alberta.

Canada. pp. 4-t3. July tS-tT, 1986.

iGirgis & Woodward 86]
M. R. Girgis and 3,I. R. Woodward, Art Experimental Comparison of the Er-

ror Exposing Ability of Program Testing Criteria, Proe. Workshop on Soft-

ware Testing. Banff. Alberta, Canada, pp. 64-73, July 15-tT, 1986.

39

2-108

!
!
!
I

!
i
i
!

!
I

!
!

i
i
!
I
I
I

!
!

!
!
II

i

!
!

S. A. Gloss-Soler, The DACS Glossary: A Bibliography of Software Engineer-
ing Terms, Data & Analysis Center for Software. Griffiss Air Force Base. NY
13441, Pep. GLOS-I, Oct. 1979.

iGoodenough & Gerhart 75!
J. B. Goodenough and S. L, .Gerhart, Toward a Theory of Test Data Selec-

tion, IEEE Trans. Software Engr., pp. 156--173, June 1975.

iGould T51
J. D. Gould, Some PsychologicalEvidence on How People Debug Computer

Programs, International Journal of Man.Machine Studies 7, pp. 151-182,
197.5.

iGould & Drongowski 74!
J. D. Gould and P. Drongowski, An Exploratory." Study of Computer Pro-

gram Debugging, Human Factors16, 3,pp. 258-277,1974.

!Griffith & Henry 72!

P. F. Griffith and R. M. Henry, An Investigatory Study into Human Prob-

lem Solving Capabilities as they Relate to Programmer Efficiency, Computer

Personnel 3, 3, pp. 10-15, 1972.

:Hetzel76_

W. C. Hetzel, An Expermental Analysis of Program Verification .Methods,

Ph.D. Thesis, Univ. of North Carolina, Chapel Hill, 1976.

Howden 7T

W. E. Howden, Symbolic Testing and the DISSECT Symbolic Evaluation

System, IEEE Trans Software Encr. SE--3, 4. pp. 266-278, 1977.

Howden 78a;

W. E. Howden, Algebraic Program Testing, Acts Information IO, 1978.

Howden 78bi

W. E. Howden, An Evaluationofthe Effectivenessof Symbolic Testing,So/t-"

ware - Practice and Experience 8, pp. 381-397, 1978.

4O

2-109

Howden 80al

W. E. Howden, Functional Program Testing, IEEE Trans: So/t_,are Engr.
SF_,-6, pp. t62-t69, .Mar. 1980.

Howden S0b i
W. E. Howden, Applicability of Software Validation Techniques to Scientific

Programs, A C._[Transactions on Programming Languages and Systems 2, 3,

pp. 307-320, July I980.

iHowden 811
W. E. Howden, A Survey of Dynamic Analysis Methods, pp. 209-231 in Tu.
torial: Software Testing FJ Validation Techniques, 2nd Ed., ed. E. Miller and
W. E. Howden, 1981.

Hwang 811
S-S. V. Hwang, An Empirical Study in Functional Testing, Structural Test-

.ing, and Code Reading/Inspection*, Dept. Com. Sci., Univ. of Maryland,

College Park, Scholarly Paper 362, Dec. 1981.

IEEE 831

IEEE, [EEE Standard Glossary of Software Engineering Terminology, Rep.

[EEE-STD-729-I983, [EEE, 342 E. 47th St, New York, 1983.

Jelinski & Moranda 731

Z. Je[inski _nd P. B..Moranda, Applications of a Probability-Based .Model to

a Code Reading Experiment, Proc. IEEE Sgmposium on Computer Software
Reliability, New York, pp. 78-81, IEEE, 1973.

Jensen & Wirth 74:

K. Jensen and N. Wirth, PASCAL

Springer-Ver[ag, New York, 1974.

b_cr Manual and Report. 2nd Ed..

Johnson, Draper & Soloway __3:
W. L. Johnson, S. Draper, and E. Soloway, An Effective Bug Classification

Scheme Must Take the Programmer into Account, Proc. Workshop High-

Level Debugging, Palo Alto, CA, 1983.

iLinger, Mills & Witt 79i

R. C. Linger, H. D..Mills, and B. I. Witt, Structured Programming: Theory
and Practice. Addison-Wesley, Reading, NIA, 1979.

41

2-110

!

t
!
I
I

!
I
!
!

I
l

i
i
I
i
i
I

!
I
!

!
I
|
I
!
!

_,le\f,,ll;,-, _ C_anh'tOn _n

P. R. McMullin and J. D. Gannon. Evaluating a Data Abstraction Testing
System Based on Formal Specifications, Dept. Com. Sci., Univ. of .Maryland.

College Park. Tech. Rep. TR-gg3, Dec. L980.

iMeyer 851
B. Meyer, On Formalism in Specifications, [EEE Software 2, pp. 6-26, Jan.
1985.

iMiller & Howden 81;
E. Miller and W. E. Howden, Tutorial: Software Testing &: Validation Tech-

niques (Second Edition), [EEE Catalog No. EHO 180-O, IEEE Computer So-
ciety Press. New York, 1981.

iMills 721
H. D..Mills, Mathematical Foundations for Structural Programming, [BM

Report FSL 72-6021, 1972.

iMills 75]
H. D. Mills, How to Write Correct Programs and Know It, I,t. Con[. on Re-

liable Software, Los Angeles, pp. 363-370, 1975.

[Myers 781
G. J..Myers, A Controlled Experiment in Program Testing and Code

Walkthroughst Inspections, Communications o[the A CM, pp. 760-768, Sept.
L978.

iMyers 791
G. J. Myers, The .Art of Soflu.'are Testing, John %iley & Sons, New York,
L979.

Naur 69i

P. Naur. Programming by Action Clusters, BIT 9, 3. pp. 250-258, L969.

:Ostrand & Weyuker 84

T. J. Ostrand and E. J. Weyuker, Collecting and Categorizing Software Er-
ror Data in an industrial Environment*, Journal of Systems and Softwar_ 4,

pp. 289-300, L984.

42

2-111

!

Panz[8t O

D. J-, Panzl, Experience with Automatic Program Testing, Proc..VBS Trends

and Applications, Nat. Bureau Stds., Gaithersburg, MD, pp. 25-28, May, 28
1981.

.Scheffe 59]
H. Scheffe, The Analysis of Variance, John Wiley & Sons, New York, 1959.

Selby 83 _,
R. W. Seiby, An Empirical Study Comparing Software Testing Techniques,

Sixth Minnowbrook Workshop on Software Performance Evaluation, Blue

Mountain Lake, NY, July 19-22, 1983.

iSelby $5
R. W. Selby, Evaluations of Software Technologies: Testing, CLEANROOM,
and Metrics, Dept. Com. Sci., Univ. Maryland, College Park, Ph.D. Disserta-

tion, Tech. Rep. TR-1500, 1985.

:iSelby 86l
R. W. Selby, Combining Software Testing Strategies: An Empirical Evalua-

tion, Proe. Workshop on Software Testing, Banff, Alberta, Canada, pp. 82-
91, July 15-17, t986.

iSelby, Basili & Baker 86!
R. W. Seiby, V. R. Basili, and F. T. Baker. CLEANROOM Software Devel-

opment: An Empirical Evaluation. Dept. [nfo. and Com. Sci.. Univ. Califor-

nia, Irvine, Tech. Rep. TR-86-07, May 1986. (submitted to the [EEE Trans.

Software Engr.)

I

I
!
!
I
I

I

I

!

SeIby et al. 84i

R. W. Seiby, V. R. Basili, J. Page, and F. E. McGarry. Evaluating Software

Testing Strategies. Proc. of the Ninth Annual Software Engineering

Workshop, NASA, GSFC, Greenbelt, MD, Nov. 1984.

Stucki 7T

L. G. Stucki, New Directions in Automated Tools for Improving Software

Quality, in Current Trends in Programming Methodology, ed. R. T. Yeh,

Prentice Hall. Englewood Cliffs, N J, 1977.

43

2-112

I

I

,!
i

I

!

!
l
!
!
!

Valdes & Goel 83! --

P. M. Valdes and A. L. Goel, An Error-Specific Approach to Testing, Pro¢.

Eight Ann. Software Engr. Workshop, NASA, GSFC, Greenbelt, MD. Nov.
1983.

Weiss & Basiti 85!
D. M. Weiss and V. R. Basili, Evaluating Software Development by Analysis

of Changes: Some Data from the Software Engineering Laboratory, IEEE
Trana. So]try'are Engr. SE.-II. 2. pp. 157-168, February 1985.

iWoodward, Hedley & Hennell 801
M. R. Woodward, D. Hedley, and M. A. Hennell, Experience with Path

Analysisand Testing of Programs, [EEE Trar_.So[tware Encr. SF.,-6,3,pp.

278-286, May 1980.

iZelkowitz et al. 841

M. V. Zelkowitz, R. T. Yeh, R. G. Hamlet, J. D. Gannon, and V. R. Basili,

Software Engineering Practices in the US and Japan, Cfmputer IT, 6, pp.
57-66, June 1984.

•4 ,4

2-113

Fl|ure 1. Capabilities or the _es_In_methods.

code reading functional structural

testing testing

view program

specification X X X

view source

code X X

execute

program X X

Flgure 2. Structure of goaLs/subgoals/questlon_ for testing exper_men¢.

I. Faul_ detection efrectlvene_

._ For programmers doing unl_ testing, which of the tes_Ing techniques

(code reading, functional testing, or s_ructur_J _esclng) detects the
mos_ faults In programa?

I.Which of the _eehnlques detects _he greatesl;percentage of faults In

_he programs (the progracna each contain a different number of
faults):

2. Which of the techniques"exposesthe grea_es_number (or percentage)

of program fault_(fault.sthat are observable bu_ noc necessarily

reported):

B. Is the number of faults observed dependent on sol, ware cy'pe?

C. Is the number of faults observed dependent on _he exl_er_lse level of the

person testing?

I].Fault detectloncost

A. For programmers doing unl_ _estlng. which of _he _es_lng _echnlques

(code reading, functional tes_Ing,or s_ructur_l _es_In¢)de_ects _he

faultsat the hl_hes_race(_faults/effor_)?

2-114

I

!
I

,|

I

!

i
I
I
t
,,i
I
I
I
I
I
I
i
I

I

I
I
I
i
I
I
I
I
I
i
I
I
i
I
i
I
I
I

B. L_ _he f_ulc de_eczlon ra_e dependen_ on software _ype.'

- C. Is _he f_ul_ dezec_lon rm_e depeaden_ on _he exl)er_Lse level of _he person

_estlng:

rrr. Classes of faul_ observed

A. For pro_-ammerm doing unl_ r_s_lng, do _he methods _end _ capture

dlfferen_ classes of faults:

i

B. _ clMses of faul_ are observable bu_ £o u_-epor_ed?

,,| ,, ,

Fl|ure 3. Expertise

Level of

Experzlse

Advanced

Intermediate

Junior

i I

Phase

1 2 3

(U_v. Md) (U,,,v. Md) _N_A/CSC)

0 0 8

9 4 11

20 .9 13

29 13 32

8

24

42

74

F1cure 4.

P z - Cex_

formatter

in s - ms_hem_lcsl

plo_¢lnK

P_ - numeric ds_a

zbsCrac_lon

,P _ - da¢&bsse

The programs Zeu_ed.

source executable

lines s_a_men_s

169

14_ 95

147 48

385 144

maintainer

I' I

cycloma_Ic

comple_;y

18

32

18

57

,_routlnes

3

8

g

7

_f_ul_

9

7

12

2-115

!

Figure 5. Pro%rzms tested in e_.ch

Program

l

' (Unlv. Md)

X

X

X

P _ - text formatter

P t - mathematical plottlnK

P _ - numeric data abstract!on

P _ - database maintainer

phase of the anal,vsls.,.,

Phase

2

(Univ.._id)

X

X

X

Fl_.ure S. Dls_rlbutlon

Omlsmon

In/tlallzatlon

Computation

Control

Interface

Da_a

Cosmetlc

Total

of faults In the .u.ro_rRms.

Commission Total

2

8

7

13

3

1

0 2

4 4

2 5

2 11

2 1

0 1

I0 24 34

3

(.-'q.A.SA/CS C)

X

X

X

!
II

!

11
!

!
Fll;ur_ 7.

FaultProKram Om[sslon/

Commlssion

a P 1 omission

Fault classificationand manlfestatlon.

Class Description

contro| a blank is printed before the _L-stword

on tl_e firstllne unless the firstword Is

•30 characters long; In the latter case, a

blank llne Is printed before the first

word

I

!
!

b Pl commlsslon Inltlallzatlonthe character _ (not $) Is _he new-line

character !
c P1 commlsslonlnltlallzatlonthe llne slze Is 31 characters (not 30);

_his fault cruses the references to the

number 30 In the o_her flaul_sto be ac-

tually _be number 31
!

d Pl commission interface since _he program pads an empty Input

buffer with the character "z," it Ignores

a valid input llne that has a "z" as a

flrs_ character

m,

e P1 omlsslon control successive break characters are not COB-

densed In the output
i

2-116

!

!
!

I

i

I

!
I

!
I
I

!
I

I
I

f Pi commlssion cosmetic spelling mlstalce In the error message

"=== word _;olong ==="

g PI commlssZon computa_lon after

h Pl omission ln_erface

I PI comml-_lon control

detectlng a word in she Inpu_

longer than 30 characters, the message

",=* word _o long =**" is prlnted once

for every character over 30, and the pro-

cesslng of _he tex_ does no_ termlna_e
l, i ,=

after deCecstng a word In the Inpu=

longer than 30 charac_em, _he program

prlnm whatever Is resldlng In Its output

buffer

after deCec_Ing an Input llne wtthou_ an

end-of-text character, the prozram er-

roneously Increments Its buffer pointer

and replaces the flr_ character of the

nex_ Input llne wtl;h a "Z"

J P3 commlsslon Interface routlne FIRST re_urns zero (0) when the

lls_has one element

k P3 coInmlsslon interface routlne ISEMPTY returns _rue (i) when

the llsthas one element

l P3 commlsslon Interface routlne DELETEFIRST can not delete

the Rr_ list element when the llst has

only one element
i i

Interface routine LISTLENGTH returns one less

than than _he actual len_h of the lls_

m P3 commission

n P3 commlsslon Interface routine ADDFIRST can add more than

_he specified five elements _o the llst

o P3 commission Interface routlne ADDLA_T can add more than

the specified five elements _o the llst
i ,,,

P3 omlsslon compu_aMonroutlne REVERSE does not reverse the

[Is_ properly when the llst has more than

one element

q P4 commlssloncomputa_lonwords greaser than or equal to _hree

characters (not s_rtc_ly grea_er than) are

_reated as cross reference keywords

r P4

P4

commlsslon interface

commlsslon control

since _he program uses the key "ZZZ" as

an end-of-lnpu_ sentinel, It does no_ pro-

cess a valld record with key "ZZZ" and

Ignores any following records

update action add wt_h the error coRdl-

_Ion "key already In the master file" re-

places the exls_Ing record: the update

record Is not Ignored

!
!

2-117

t P4 commlsslon control update action replacewltl_ the errorcon-

dltlon"k, ; not found In _he master file"

adds the record;_he update record Is_o_

Ignored

!

I
i

,I
u P4 omlsslon da_a the number of referencesand number of

words In the dlctlonary are not checked
for overflow

i

v P4 oml_lon computatlontwo or more update transactionsfor the

same mas_er record glve Incorrectresults
i i

w P4 commls_ion Interface kelrwords longer than 12 characters are

truncated and not; distinguished

x P4 commUsslon control an update record with column 80 neither

an add ac_lon "A" nor replace ac_lon

"R" acts like an add transaction

y P4 commlsslon Interface keyword lndlces appear In reverse a_pha-
betical order

z P4 omlsslon Interface no check Is made for unlque keys In the

mas_er me
i

A P4 commlsslon In_erface puncCuatlon Is made a par_ or _he key-

word

P4 omission data words appearing twice In a title ge_ two
cross reference entries

II

P2

I
I
I

I

ii

B

C commlsslon computatlontbe x and y axes are mislabeled

D P2 omlsslon compucatlonpolnts wlth negatlve y-values are no_

processed and do not appear on the

graph

_he orlIIin(0,0)appears on the graph re-

gardlessof whether I_Isan Input point

I
!

E P2 commlsslon control

F P2 commlsston data
i

G

H

no points can appear on the vertical axis

P2 commlssloncomputa_lonthe vertical and horizontal scalln_ for

_he plxels are calculated Incorrectly,

causlnz some polncs not to appear In _he

proper plxel

P2 omlsston computa_lonwhen more _han one polnt would _ppear

In a ._Ivenplxel,only an as_ertslc(,) ap-

pears,no_ an approprla_e Integer

2-118

I
!
,I

I

I
I

I
i
l

!
!
!
t
t

II
l
li
!
!
t
I
g
!
il

li
II

,|

li

,Figure 8. Fr-_c_tonal
, 1 ,

SI

Advanced S s
Subjects

$8

S_

In_r,. S 1o
medl_e

SubJee_

Sz9

S so

Juror S zl
SubJee_

$32

i

F_c_oHa[Design.
Code Ftmctlon_ S&ruc_ur_

Reading ,, Teeing . T_lng

PIPs P_ PIPs P_ PI PsP_

--X--

X----

--X-

X---

• e e

• e •

-----X

--X

--X--

X-----

--X--

• e e

• e e

----X

X
-----X

• • Q

-X

X----

--X--

X----

2-119

Figure

1

1

1

1

2

2
I

3

3

3

3
,

3

3

3

Ave
i

Age

AYe

Ave

Ave

9. Overall summary of detectlon egectlveness da_a.

Note: some data per_aln to only on-llne technlques (,), and

some data were collected onlF" tn certain phases...

2g

2g(_=)

2o(,)
, =o_,)

13
|m

13

32

.32

32
i

32(.)
32(,)
32(,)
32!*_

74

74

ai(.)
ai(,)
_I,(,)

IV[e3._ure

FauLts detected

c_oFaults detected

._.Fsults observable

_o Fsul_s observable

°77Detecled(observable

Faults detected

Faults detected

FsulCs detecCed

N[ean

3.g4

54.78

5.38

74.50

70.90
.==

3.28

3g.53

4.2T

SD

1.82
, ,

2{).Ii

1.51

20.54

24.01

l.g8

0.00

0.00

N[ax.

7.00

I00.00

3.00 8.00

33.33 I00.00

100.000.00

0.00

0.00
II

0.00

7.00

I00.00

8.00

I00.00Faul_s de_ected 40.82 _J'.44 0.00

Faul_s fel_ found 75.10 24.07 0.00 I00.00

Faull;sobservable 5.81 1.52 3.00 g.00

18.35

27.14

7.83

1.88

_2.11

8g.87

o7.o2
3.g7

4g.go
,..

Faulr.s observable

o-_ Del;ected/obse.rvable •

.N{ax. _q st;rot, covered

_k Faults detected

% Faulm detected

25.00

0.00

48.00

0.00

0.00

3.00Faults observable

27.2g

1.5

I00.00

I00.00

I00.00

8.00

100.00

g.o0

o_ Faults observable 20.3 25.0 I00.0

% De_ecCed/observable 70.3 25.5 0.0 I00.0

2-120

|

!
I

I
I
I
I

1
I
I
I

I
t
I
|

I
1
I

FIKIare 10.

S

0

$
F
C

0

$

S
C
C

1

Discribu¢ion of ¢lle number of _aul_ de_ecced broken down by Dha_e.

reade_ (CL f'une¢ional testers (Ft and s_ructura.l testers (S).
' _' ' I' I

S
S S

S Ph&se 1 : S

S 87 observ&r, tgns S
S S

S F
S F

S S F
F S F

F $ F
S F S $ F

S F $ S F
S F S S $ F

S F S F $ F

S C S F S F

S C F S S F S S F

$ C F S S F S S F

F C F F S F S F F
F C F F F C S F F

F C F F F C $ S F C

F C F F F C S S C C

C C C C F C $ F C C

C C C C C C S $ C C C
C C C C' C C C F C C C

2 3 • 5 6 7 8 9 0 1 2 3 4

Key: code

Phase 3:

96 observ&_tons

S
S

$ S

F S
S F F

S F F
F F C

F F C
F F C

F C C
F C C

C C C

C C C
C C C

C C C C

$ 8 7 8

S S

S S

S S S

S S F S

C S F F S F

C F F C F F

C" F Y C F Y

C C C C C C

1 2 3 4 5 8

]S:_&se 2:

39 observations

C

7 8 9

2-121

Figure 11. Overall summary, for number of t'aut_s detected.
Phase

. , I 2 3

EITe¢_ Level .'Vfean(SD1 Mean(SD1 Mean(SD)

Te_h,,lq,1, Re_n_ 4.10(1.93) 3.00 (2.20).. 5.09 (1.92)

Prog_, m

Func_lonzl

Plot_er

Da_a _y'pe

Dat, ab_e
I

Exper_Ise Junior

In_ermed.

Advanced

4.45(1.7o)
3.2s (1.e7)
4.07(1.o2)
3.48(1.4s)
4.2e(2.2.5)

• (./
I

3ss (1.s0)
4.o7(1.80)

. (.)

3.77 (_.s3)
308 D.so)
3.,3 (2.2o)
3,,31 (1.97) ,

.(.)

3.31 (184)

3.04 (2.07)

3.83 (1.84 I

• G)

4.47 (1.34 l

3.25 (1.8o)

4.19 (1.73)
.(.)

s.2_ (1.75)
3.41 (1.80/

3.00 (1.83)

4.18 (1.99)

s.oo (z.53)

Flgure 12. Overall summary of fault de_ec_ion cos_ da_a. Note:

some data per_edn co only on-line _ech.ulques (,), and some

data were collected onl,v In cer_aln phases.

Phase #Subj.
1 2g

1 29

2 13

2 13

3 32

3 32

3 32(,)
, 3 ,32(*)

3 3:z(,)
3 32(*1

I m

,,_.ve 74

Ave 74

Me_ure

@ Fau!_ / hour

Detection Ume (hrs)

Faults / hour

De_ectlon _Ime (hrs)

Faults / hour

Decec_lon _Ime (hrs)

Cpu-tlme (sec)

Cpu-tlme (sec.:norm.)

Connee_ tlme (mln)

@ program runs

Faults / hour

Del;ectlon _;Ime (hrs)

Mean SD _[In. .'V[z.x.

7.00

i0.00

o.gg 0.81 0.00 3.00

4.70 3.02 1.00 14.00

2.33 2.28 0.00 14.00

2.75 1.57 0.50 7.25

45.2 58.1 3.0 283,0

38.5 51.7 2.9 314.4

85.83 50.21 3.50 214.00

1.00 24,00

o.oo i 14.oo
0.50 14.00

1.83 1.28 0.00

3.33 2.00 0.75

5,45 5,00

1.82 1.80

3.32 2.10

2-122

Flgure 14. Overall summary for faull_ detectton ra_e (_ fault_

de_eeted oer hour I.P

Efrec_

Technique

Pro,crash

Expertise

Level

Readlnz

Func_lonal

S_ruc_ur_l
I

Formatter

Plotter

Da_a _ype

Database

Junior

Iutermed.

Advanced

I

Pba_e

Mean(SD)

1.oo(i.53)
i._8 (o.0o)
1.40 (0.87)

i.oo (z.3o)
1.1Q(0.83)

2.og(1.42)
. (3

1.36(o.gT')
2.2?(I._)

•(.)

MeanfSD_

o.5o(o.4o)

1.22(o._I)
1.18(0.8,0
o._8(o.aT')
o.Q2(o.n)

.(.)
1.o5(i.o41
1.oo(o.85)
o.o_(o.74)

•.(.)

Fl_ure 15.

Omission
i,

Commission

To_a[

Initial.

Con_ro!

Data

Computat.

Interface

Cosmetic
f

To_al

CharRcterlzatlon of the faults detected.

Code

FLeadln_;

5_.o(4oa)

54.1 (2g.21

4.(_o.3/
. (_e._)
o.z (3o.)
zo._ (s'r.o)
,_.z (38.5)
ze.r (_8.1_
5.½.1(2o...)

Fu_c_lonal

Testing;

oi.o (_o.5)
5_._(=5.4)
_4.o (:z4.5)
z_.o (_.1)

o.z(34.)
8.s (4.g)
e4.2(40.8)
30.Z (33.5)

S_mcmral

Te_t!n_

44.3 (2_.8)

1. (o.o.1)
4o._(_o.8)

,.,_8.8(_e.5)
,.8(4Lo)
58.8(4_.5)
24.e (2o.4)

7.T (27.2)

41.2 {2(_.1)

[,

I Overal'l

50.T (28.4')
I

50.0 (2Z,3')
o1.5 (4o.=)
5_.s(3_'.2)

25.3 (41.0)

34.z (3e..z)
10.8 (31.3)

50.0 (°.7.3)

2-124

W

I
!
!
t

I,

I
I
I
I
!
1
l
i
I
I
I
I

I

Flgure 16. Cluu--_erlzatlon of 1'aulCs dezec_ed by the zhree

ceclmlques: I0 omL_lon (0) vs. 24 commL_lon (x). The

_'er_lc_ acts Is the number of persons usln_ the p_xclc_m-

_echnlc_ue chac observed, the f_ulC.
t t { {

Resdln _ Func_lonal Structural

Ioo%

7s%

5o%

25%

o%

O OxO

xxxx Oxxx Ox

Oxxx x

O x x

x xOxxx x

xO X O

xxx xx xxx

xx xx

x x

Oxx

xxxO xOxxx

x

Ox.

x

xxx

xO

O

OxOO

Ox

x

Oxx

xxxx

O

xx

xOOxO

xOOxO xOx O._cx

2-125

!

!
|
m=,

1
Ftaure 17.

i00%

7S%

so%

2s%

o%

Charxc_ertzz._ton of fau[_ detected by _he _hree

_echnlques: Ialtlallza_lon (2-A.),, computation (8-F), con-

"_rol (7-C), da_a (3-D), ln_erface (13-I), and cosmetic (Z-S).

The vertical axls is the number of persons using _e par-

tlcular _echnlque that observed the fault.I I

Readln_ Functtonal Structural

P PIP

PIII PIIC PC

CIII I

P A P
C &CPPC C

C P

A.IP CC PCF

CC PC
D ._

CPI

I_ DP_I

A

CI
I

IIC

II
D

CSDI

CP

D

DCI

SPII

I

PI

SIPID

CPIID IDI PEI

2-126

I
,I
I

l

I
l

I
i

|

i
I
i
i
i
I

I

l
i

I

i
l
l
I
!
I
l
I
I
I
I
I
I

Fl_ure IS. Charzc_er_za_lon
Func_lonal

O mlsslon

CommL_slon

Toted
II

Initial.

Control

D_c&

Computaz.

Interf_.ce

Co6metle
II

Total

T_tln_[

13.T(25.4)
lO.i (2o_o)
18.1 I17.8)

5.0 (15.4)

2o.s(so.6)
_s.8(4s.5)ii ii

la.O (.sl.s)
i_.z (2o.o)
ao.o (so.3_

I I I

I ls.1 (1_.s)

of'_he faultsobservable,bu_ no_ reoor_ed.
'I

S_ruc_ur_

Testl,n_

21.s_Sl.S)
20.1 (18.{5_

I I I I

19.0 IIS.8)

14.% (32.2)

2!.1(si.4)

2o.1(=.8)
2o.s (21.s)
8s._(ss.Q)
_9.9(is.s)

Over'All

I

lS.5(2s.s)
19.S (18.3_

19.oII_.Sl
9.s(_.s)

_o.z(so.s)

,,lS.O(s_._)
, lS.2 (_o.s)
_s._I_._)
19.o(iv.s)

2-127

i !

I

l
I
l
l
l
l
I
l
i

i

I
I
i
l
l
I

SECTION 3 - MEASUREMENT ENVIRONMENT
STUDIES

SECTION 3 - MEASUREMENT ENVIRONMENT STUDIES

The technical papers included in this section were origi-

nally prepared as indicated below.

• "Tailoring the Software Process to Project Goals

and Environments," V. Basili and H. D. Rombach,

Proceedinqs of the 9th International Conference on

Software Enqineerin_, March 1987

• "T A M E: Tailoring an Ada Measurement Environ-

ment," V. Basili and H. D. Rombach, Proceedings of

the Joint Ada Conference, March 1987

• "T A M E: Integrating Measurement Into Software

Environments," V. Basili and H. D. Rombach,

TR-1764, University of Maryland, Technical Report,

June 1987

• "A Meta Information Base for Software Engineering,"

L. Mark and H. D. Rombach, TR-1765, University of

Maryland, Technical Report, July 1987

• "Characterizing Resource Data: A Model for Logical

Association of Software Data," D. R. Jeffery and

V. Basili, TR-1848, University of Maryland,

Technical Report, May 1987

0310

3-1

l

I

I

i

I

I
I
I

I
I

I
i

I
i
I
i
I

I
I

I

i
l

I
i
l
i

I

l
l
l
i
I
l
l

l
l
I

TAILORING THE SOFTWARE PROCESS

TO PROJECT GOALS AND ENVIRONMENTS

Vk, tor R. Buill Ind H. Dieter Rombach

Department of Computer Science

University of Maryland
C,oilkqEe Park IvlD 20742

(sol) 4s4-2oos

This paper pr_ents a methodology for improving the

_oftware procem by ta/loring it to the speei§e project _zds

sad environment. This improvement procees is 1_-ned at the
global "software process model as well as methods sad took

supporting that model. The basic idea is to use defect

profiles to help eharacteri=e the environment sad evaluffite
the project goals ud the effectiveness of methods and took

in n quantitative way. The improvement proce_ is imple-

mented itoratively by setting project improvement goals,

chsu_cterizing thcus _ ud the environment, in part, vin

defect profiles in z quantitative way, choking methods tad

tools fitting those characteristics, evaluating the actual

behavior of the chosen set of methods sad tools, and refining
the project goals baaed on the evaluation results. All these

activities require analysis of large amounts of data and,

therefore, support by an automated tool. Such a tool .

TAME (Tailoring A Measurement Environment) - is
currently being developed.

_ORDS: software process, methods, tools, measure-

ment, evaluation, improvement, tailoring,
goals, environment, errors, fanits, failures.

II_%e,OJ_L_TJOM

One of the major problems in software projects is the

lack of mLnagement'n ability to (1) find criteria for choceing

the appropriate process (global procure model and methods

and tools supporting those models), (2) evaluating the good-

ness of the software process, and (3) improve it. In • survey

of the software industry Thnyer et al.w listed the twenty

* Rem_twekfee tbk stldy was npNrttd is I_t by tin It•tired Amutia ud
S_tt.e Admimbtnttiomm_mt NSO-SI_ to _. Uaivmmitrof Idw/hmd. _m_ut_
Um_ mm m,pl,Wted is pm.t _ tim re,tim d tim _mlmt_ Se_tm _ntt_
el the Uaiwm_ el MmTlmd.

_n to copy without for all or pert oi this mmtesiai is groined
provided tim• the coplm are not made m distributed for diseet
com_ sdvsmal_ the ACM _ _ am/the title of the

publication and its date appear, and notice is given that copying is by
pem6umion of the Amecimioa forCompmin 8 Machinery. To copy

or to republiC, n_quires s fee sad/or spu_if_ permimion.

major problems reported by software msaagem.. Of these
twenty, over half (at least thirteen) delineated the need of

management to find selection criteria for the choice of tech-

nolo_D" or to be able to judge the quaiity of the existing soft,-

ware procem.

In many cases, there does exist a fair nmount of tech-

nology avaiinble for software projects. However, it is not

always •ppxrent to the manager which of these methods or

tools to invest in, and whether or not they axe working as

predicted for the particular project. What is needed in

aimcet all cases is • quantitative approach to software
management and engineering.

We have been working on a methodology for choking

and improving the software proce_m sad resulting products.

A particular software proce_m is defined by a global proeem

model sad methods and tools that support it. In this paper

we emphasize choosing and improving the set of methods

amd tc_ls in the context of • given global process model.

The criteria for improvement of the set of methods sad tools

to be used in a project is the degree to which they support

the achievement of given project quality sad productivity

goals in this particular project environment. Such •n evolu-

tionary improvement process requires the tailoring of

methods sad tools to (constantly changing) project goals and

environment characteristics. Sound tailoring requires the

ability to characterize the project goals to be achieved, the

environment in which those tunis are to he achieved, and the

effect of methods and tools on achieving those toxin in a par-

ticular environment. Qunntitutive characterization is pre-

ferred because it gives more credibility to characterizations

and better justification to the improvement recommenda-

tions bued upon these characterizations.

There are various approaches to eharacteriz•tion, one of

which is to use defects (errors, faults, and failures). Project

goals are characterized by the number sad type of defects

(devi•tious from the optimum), environments are character-

ized by the number sad type of defects they impose on pro-
jects, ud methods sad tools can be characterized by the

number sad type of defecte relnt_l to their use. We csa

think of alternative approaches to characterize the impact of

goals, environments, methods and tools. Instead of defects

during development we could use defects during operation or

some measure of customer's/user's satisfaction. A com-

pletely different upproach would be to characterise • project

environment and methods and tools by • set of factors such
as 'what are the abilities of humsas involved and how are

thcee abilities supported by candidate methodu sad tools',

'what are characteristics of the software process model sad

@ 1987 ACM 0270-5257/87/0300/0345500.75
345

Reviewed and recommended by:

Barry Boehm

3-2

!

!

how are those aspects supported by candidate methods and

tools', etc. These different characterization approaches are

not necessarilyexclusive but might be used together. How-

ever, in this paper we are basing our tailoringon defect

profilesduring development.

As indicated in figureI the characterizationmechanism

'defects during development', is applied to a particular

environment, the NASA/SEL environment. Therefore, all

the defect profilesand characterizations presented in this

paper are specific to those NASA/SEL projects. The fact

that the impact of methods and toolsmay vary substantially

across environments does not affectthe message to be sent

by this paper: There are ways to support a project

manager's need to evaluate and improve the software process

based on quantitative information. The approach can bi_

transferred to other environments, the specificcharae.terizs,

lions derived from NASA/SEL projects cannot; they have to

be revalidated in the new environment.

I Improvem'ent °[[

Methodology]]

• !

-' S 7c
l ser "'[[Operational
Isatisfacti°nf"l

II

In the following sections we introduce the improvement

methodology; the relationship of errors, faults, and failures

with a (most process model underlying) problem-solution
model; classification schemes for errors, faults, and failures;

the tailoring approach including characterizations of' the

impact of methods and tools in the NASA/SEL environment;

an application of the improvement methodology to a charac-

teristic NASA/SEL project; and, finally, the TAME (Tailor-
ing A Measurement Methodology) project intended to sup-

port all measurement and evaluation tasks required by the

presented improvement methodology.

IMPROVEMENT METHODOLOGy

The improvement methodology requires a mechanism

for charsctel:izing the project environment and the candidate

process models, methods, and tools. The process requires an

organized mechanism for determining the improvement

goals; defining those goals in a traceable way into a set of

quantitative questions that define a specific set of data for

collection. The improvement goals flow from the needs of the

current project and, as far as possible, knowledge from previ-

ous projects. Based on a check to what degree the esta-

blished improvement goals can be met by candidate process

models, methods, and tools in the particular project environ-

ment, the most promising ones are chosen for the current

project. Throughout the project the set of prescribed data is

collected, validated, fed back into the current project, and

subsequently evaluated for the purpose of improving future

projects. This evaluation determines the degree to which the

stated improvement goals were met by the chosen software

process. Based on these findings recommendations for

improvement are made as input for the next project.

This whole improvement processe isstructured into five)l o.v. p.. tllDefects Defects major steps:

,,./.._._. 1. Characterize the approach/environment, t

.-_ _ _ _1"'f'" This step requires an understanding of the various factors Uthat will influence the project development. This includes

--" ...-" the problem factors,e.g.the type of problem, the newness

D 11 NASA/SELl] to the stateof the art, thesusceptibility tochange, the

Fl s. I. Improvement Methodology Framework

Figure 1 clearly decribes the overall scope of the

improvement and tailoring approach presented in this paper.

Based upon a general improvement methodology we (1)

emphasize choosing and tailoring the set of methods and

tools to specific project goals and environments, (2) use one

particular mechanism (development defects) for quantita-

tively characterizing project goals, environments, and the

effect of methods and tools, and (3) validate the approach in

one particular environment (NASA/SEL).

346

3-3

* The SEL (So_wsre En@neerin s Laboratory) is • joint project between NASA

Qoddard $pa¢¢ FlilLht Center, the University of M_y|tnd, and Comp_ttsr Scb

¢nees Corporation. The objective of this project is to evaluate and improve the

software process and its resulting products.

people factors, e.g. the number of people working on the

project, their level of expertise, experience, the product

factors, e.g. the size, the deliverabhs, the reliability

requirements, portability requirements, reusability require-
ments, the resource factors, e.g. target and development

machine systems, availability, budget, deadlines, the pro-

cess and tool factors, e.g. what methods and tools are

available,training in them, programming languages, code

analyzers.

2. Set up the goals, questions, data for successful pro-

ject development and improvement over previous

project developments.

It is at this point the organization and the project

manager must determine what the goals are for the project

development. Some of these may be specified from step 1.

Others may be chosen based upon the needs of the organi-
zation, e.g. reusability of the code on another project,

improvement of the quality, lower cost.

S. Choose the appropriate methods and tools for the

project.

Once it is clear wllat is required and available, methods

I

I
I

I
t
l
!

!

|
!
I
!
l

II
I

il
l

II
II

and took should be chosen and refined that will maximize

the chances of satisfying the goals laid out for the project.

Tools may be chceen because they facilitate the collection

of the data nece_ary for evaluation, e.g. configuration

management tools not only help project control hut also

help with the collection and validation of error and change
data.

4. Perform the software development and mainte-

nance, collect the prescribed data and validate it,

and provide feedback to the eurrent project in real
time."

This step involves the transfer of new teehsologies chosen

in the previou step into the current project environment,

and the application of the new software proeem.

Throughout the project data have to be collected by

form, interviews, and automated collection mechanisms.

The advantages of using forms to collect data is that a full

set of data can be gathered which gives detailed insights

and provides for good record keeping. The drawback to
forms i8 that they eu be expensive and unreliable because

people fill them out. Interview can be used to validate

information from forms and gather information that is not

easily obtainable in a form format. Automated dttL col-

lection is reliable and unobtrusive and can be gathered

from program development libraries, program anaJyzers,

etc. However, the type of data that can be collected in

this way is typically not very" insightful and one level

removed from the issue being studied. Besides the pest

mortem analysis in step 5 for the purpose of suggesting

improvements for future projeetm, we are also interested in
tuning the software process of the ongoing project based

on read time feedback from measurement activities.

5. Analyse the d_ta to evaluate the eurremt pregtices,

determine problems, record the findings, and make

recommondatlonm for hnprovement for future pro-

jeer.

This is the key to the mechanism. It requires t post mot-

tern evaluation of the project. Project data should be

analyzed to determine how well the project satisfied its

goals, where the methods were effective, where they were

not effective, whether they should be modified gad refined

for better application, whether more training or different

training is needed, whether took or standards are needed

to help in the application of the methods, or whether the
methods or tools should be discarded and new metbods or

tools applied on the next project. Proceed to step I to

start the next project, armed with the knowledge gained

from this ud the previous projects.

This procedure for developing software has a corporate

learning curve built in. The knowledge is not hidden in the

intuition of first level managers but is stored in a corporate

data base evil|able to new and old manatee to help with

project manqement, method and tool evaluation, and tech-
nology transfer.

As indicated earlier the effectiveness of this improve-

meet methodology depends on the ability to quantitatively
chsracterize the improvement eriteri-, 'environment' (see step

1) and 'gosk' (see step 2) is well as the effectiveness of our

improvement vehicles 'proce_ models', 'methods', and 'tools'

in meeting theme criteria (see step 2). The following sections

of this paper propme an approach to support the activities
in figure 2 marked with '*' by analysis of error, fault, and

347

3-4

STEP h - characterize environment (*) J
- characterize candidate Imodels, methods, Ind tools (*)

•
STEP 2." - set up improvement goals (+)

- quantify goals (+X*)

- check c_nsisteecy between
improvement goals and

candidste models,

methods and took (*)

STEP 3;- ehocee appropriate models (**) J

- ehcoee appropriate Imethods nsd tools (**)

STEP 4: - transfer chosen technology

- perform software project (+)
- collect data (+)

- validate data (+)

- provide feedback in real time (+)

STEP 5: - analyze data post mortem

- recommend new improvement

goals for future projects (+)

- proceed to step 1

I I [[II

t

(+)

F|s. 2. Improvement Methodoloay

failure profiles. The steps concerned with setting up improve-

ment goals, dxta collection and validation, data analysis, and

interpretation are performed according to a separate evalua-

tion methodology_; tbeec steps are marked with '+' in figure

2. The choosing of appropriate models, methodn, and tools

(see steps marked with '**' in figure 2) in made baaed on
characteristics of the of improvement goals and the environ-

ment and sound knowledge concerning the qualification of

models, methods, and tools of meeting these ch_terintics'.

LIFE CYCLE OF DEFECTS

The use of methods and tools is supposed to improve

software quality and productivity by reducing the number of
defects. To make effective use of methods and tools one has

to be aware of the nature of defects.

Defects exist in three different inntances according tom:
Erroen _we defects in the human thought proc_s made

while trying to understand given information, to solve prob-

lees, or to use methods and tools. Faults are the concrete

manifestationsoferrorswithinthesoftware.Oneerrormay

cause several faults_ various errors may cause identical

errors. Failures are the departures of the software system
from software requirements (or intended use respectively). A

particular failure may be caused by several faults together; a

particular failure may be caused by different faults alterna_

lively; some faults may never cause a failure (difference
between reliability and correctness).

" "Methods and Tcob'de_s_ing with Defects

: ",',, '. ",.\ Ju_vz¢

t MA_AOE I

Fig. 3. Methods, Tools - Defects - Process Model

In Figure 3, the above defined relationship between

errors, faults, and failures, their relationship with a general

problem solving model incorporated in each concrete process

model, and their relationship with prevention, isolation, or
detection methods and toots is outlined.

A general problem solving model incorporated in %ach

process model consists (or should consist) of an iteration of

the following sequence of general activities:

• Understanding of given information such as problem,

requirements or design documents

. Constructing some new (in general more concrete) solu-

tion

* Documenting the new solution

. Analyzing the new solution, and possibly starting a new

iteration of development or executing the product

• Managing the development _nd maintenance process and

all resulting documents (data)

The relationshil m between errors, faults, failures on the one

hand and the prevention or detection approach on the other
hand are is follows:

* The number of iterations depends on the ehcmen |lobld proeem model.

348

3-5

* Errors can be prevented (e.g. by training).

• Faults can be prevented from entering a software pro-
duct (e.g. by a syntax directed editor).

• Faults can be detected during non-operational analysis,
all related faults can be isolated and corrected.

• Failures can be detected during execution (test or
operation), all related faults can be isolated and corrected.

CLASSIFICATION OF DEFECTS

The effectiveness of the introduced improvement
methodology depends on the availability of defect

classification schemes allowing us to characterize quality and
productivity aspects, as well as the impact of a particular

environment on quality and productivity, and to distinguish

between methods and tools based on the degree to which

they can prevent, detect, isolate and correct various defect

CLS_es. Numerous classification schemes for defects were

proposed for various purposes. In this section several

classification schemes for errors, faults, and failures will be

presented which are expected to allow us to do a good job in

tailoring methods and tools towards project improvement

goals and environments. Most of these schemes were

presented in the literature already, some are refinements of
earlier schemes.

The usefulness of each clsssification scheme for the pur-

pose of tailoring methods and tools to improvement goals

and environments is evaluated with respect to three criteria:

I) is it possible to decide the defect class for each defect, 2)

can the information necessary for the decision be collected

easily, and 3) for each class, are there methods and tools

that can either prevent or detect, isolate, and correct the
defects in that class. The first criterion determines whether

a scheme is of any practical use, the second criterion just for-

mulates the characteristics of a real classification scheme (for

each defect there existsone and only one class it belongs to),

whereas the third criteriondefinesthe goal of schemes in this

context.

ERROR CLASSIFICATION

The criterion for a classification of errors in this context

is, to define classes of errors by the ease with which they can

be prevented by different (types of) methods and tools. The

presented error classification schemes all try to allow the
identification of certain problem areas within the project

environment. The first classification scheme indicates the

phases in which errors occurred; the second classification

scheme indicates domains of the project environment which

resulted in errors. There exist many more schemes in the

literature _ s, most of them being refinements of the following

two schemes; refinements of these two schemes might be

appropriate in order to represent specific environment

characteristics, or 'problem-solution'.

The practical use of error classification schemes in gen-

eral is tricky because error data can't be collected by analyz-

ing documents. By nature, identifying errors means to

understand the defect in the thought process of a human

being after the fact m. The problems, and consequently

sources for misclassificstion, lie in the attempt to reconstruct

the thought process of human beings as well as in the fact
that this c|mmification of errors is usually done ai'ter the fact.

I

I
I

I
l

I
I
I

i
I

i
i
I
I

i

I
n

I
I

i
I
I
I
i
I
I
l
i
l
l
l
l
l
I
l
l
l
l

The usual procedure is, that fault data are collected, and
error data are derived based on interviews with the original

programmer or subjective guesses. An additions] problem

lies in the complex interrelationship between errors and

fanlts: One error can result in different faults (an application

error might result in t control fault is well as in • computa-

tion fault), one fault might be cwased by different errors (a

computation fault eu be caused by u application error as

well as by s clerical error), one error can result in a number
of faults •t the same time. Fining are cismified depending

on how they were corrected. It is well-known that t given

fault in many cases might be corrected in different ways

(changing a control construct or changing a computation)

what would put it into different fault einsoes. Trying to

reconstruct the underlying error based on such vague fault

elamific_tion might be an impossible

(by Time of Error Occurrence).

Classification of errors by the time of their occurrence allows

you to attribute certain errors to methods and tools used •t
this time. Becausc methods _md too t- are usually used during

certain phases or activities according to some process model,

the virtual time scale used for error classification is phases.

E.g., for NASA projects monitored by the University of

Maryland errors were classified, according to NASA's proem

model, as l) requirements, 2) speeme_tion, 3) design, 4)

code, 5) unit test, 6) system test, 7) acceptance test,

and 8) maintenance mrrors. Whenever one of the closes
in such a classification scheme shows an above average

number of errors we know what phase to emphasize for the

purpose of error prevention. This classification scheme

fulfills all three criterion for being useful.

(by Domalgm which m'e Csumhtlg

the Errors). Clami§cetiom of errom by the project zepects

that caused problems allows you to attribute certain errors

to methods end tools de-ling with these aspects of the soft-

ware project. Typical problem domains can be the applica-

tion area, the methodok_D' to be used, the environment of

the software to be developed, etc. The following

classification is a slight modification of the scheme developed

by Basili and others':

• Application errors are due to a misunderstanding of the

application or problem domain. Application errors are

p<_sible during all life cycle phase, but •re more likely

during early development phases.

• Problem-Solution errors are due to not knowing,

misunderstanding, or misuse of problem solution processes.

This kind of errors occur in the process of finding a solu-

tion for • stated and well-understood problem; this solu-

tion is then going to be represented using the syntax and

scmutic rules of some language. Practically, these

problem-solution errors can occur in the process of specify-

ing, designing or coding a problem.

• Semutice errors are due to a misunderstanding or misuse

of the semantic rules of a language (for representing code,

designs, apecificntions, or requirements).

• Syntax errors are due to t misunderstanding or misuse of
the syntactic rules of a language (for representing code,

designs, specific•tiosm, or requirements).

• Environment: errors are due to t misunderstanding or

misuse of the hardware or software environment of t given

project. Environment comprises all hardware and software

used but not developed within n given project (for'exaxn-

349

3-6

pie, operating systems, 4evi¢_*__, data bess --yste.-,._).

• Information Management errors are due to • mishan-

dling of certain p/ocedures.

• Clerical errors are due to carelessness while performing

mechanical transcriptions from one format to another or

from one medium to another. No interpretation or seman-

tic translation is involved. Examples are typing errors

using an editor.

This classification scheme has it8 problems with respect to

criterion 1. It is not always easy to decide whether an error

is of type 'application' or of type 'problem-solution'.

FAULT C_ASSIFICATION

The criterion for a classification of faults in this context

is, to define classes of faults-by the ease with which they can

be detected or _ hy different (types of) methods and

tools. The presented fault cismification schemes try to allow

the identification of certain problem areas within the project
environment. The first classification scheme indicates the

phases in which faults •re detected; the second scheme indi-

catss whether a fault was due to omission or commimion; the

third classification scheme indicates various software aspects

affected by faults. A number of fault classifications exist L n.

U.m

Fault Sch_m e I (by Thne of Fault Detection).

Classification of faults hy the time of their detection allows

you to attribute certain faults to methods and took used up

to this time. Because methods and tools are usually used

during certain phases or activities according to some procees

model, the virtual time scale for fault clam•flea•ion is phases

or activities. In the case of the NASA/$EL environment the
same classification scheme is used as in error scheme 1. This

classification scheme fulfills all three criteria for being useful.

(by Omimion/Commiasion).
Classification of faults depending on whether something is

missing completely {omimiou) or whether something is

incorrect (commission) proved to be a very helpful

clarification with respect to classifying methods and tools.

It is obvious that omission errors are harder to detect by

detection methods and took solely based on the source code

such as structural testing, whereas functional testing or code

reading are more successful based on the fact that these

methods include the corresponding specifications into the

detention proeem s. This classifies•ion scheme is useful

according to our three criteria.

,l_Ut]_t._f,i;m_&_ (by Software Aspects A_fleeted by

Faults). Clamilication of faults by the product aspects

nffected allows us to attack certain faults by methods and

tools aiming at exactly these aspects. It is obvious thnt •

large number of control flow faults is better detected by t

detection method or tool which is based on dynamic simula-

tion of the program {such as testing) rather than static

checks (such as code reading by stepwise abstractionS. How

many classes exist depends he•vily on the language used. it
doesn't make sense to create classes for faults that cannot be

identified easily because the corresponding aspects are not

represented by langna_ge features explicitly. One example is

that in Fortran environments it is harder to identify control

flow faults of global character (affecting more than one pro-
gram unit) than it is in Ads, where interfaces are explicit.

Therefore, the following classification scheme, used in the

NASA/SELFortranenvironmentisof higher granularity

(especially as far as interface or global faults are concerned)

than the corresponding scheme for an Ada environment
would be:

• Control Flow faults are related to incorrect control flow

within one module. Examples are incorrect sequences of

statements, incorrect branching, use of incorrect branching

condition, or incorrect computation of branching condi-
tion.

• Interface faults are related to problems affecting more

than one module. Examples are incorrect module inter-

faces, incorrect implementation in more than one module

due to a bad design decision, or incorrect definition or ini-

tialization of global data. An interface fault might require

corrections in only one or in more than one module.
• Data faults are related to incorrect data handling. One

can distinguish between three types:
- D,,ta Definition faults are related to incorrect name,

type, or memory specification.
- Data Initialization faults are related to incorrect ini-

tialization of a variable.

- Data Use faults axe related to wrong use of a vari-
able.

• Computation faults are related to incorrect mathematical

expression (if not a branching condition).

This classification scheme is useful with respect to our three

criteria. If a fault seems to fit into more than one class, the

first applicable one is to be chosen.

FAILURE CLASSIFICATION

The criterion for a classification of failures in this con-

text is, to define classes of failures by the ease with which

they can be detected by different methods and tools. The

presented failure classification schemes allow the

identification of the failure time and the impact of failures

on the production of a system.

Failure Scheme 1 (by Time of Failure Detection).

Cl_ification of failures by the time of their detection allows

you to attribute certain failures to methods and tools used

up to this time. Because methods and tools are usually used

during certain phases or activities according to some process

model, the virtual time scale for failure classification is

phases or activities. In the case of the NASA/SEL environ-

ment a subset of the classification scheme in 4.1.1. is used;

only those phases or activities are used which include execu-

tion: (l) unit test, (2) system test, (3) acceptance test,
and maintenance. This classification scheme is useful

according to all three of our criteria.

Failure Scheme 2 (by Severity of Failures).
Clarification of failures by their impact on the environment

of the system under consideration allow us to decide on the

degree to which those failures can be tolerated. A possible

clarification scheme is (1) stops production nompletely,

(2) impacts production significantly, (3) prevents full

use of features, but can be compensated, and (4) minor
or eosmetle. This classification scheme is useful for charac-

terizing the impact of failures, but it does not allow the
classification of methods and tools with respect to the ease

with which those failures can be detected.

350

3-7

TO PROJECT GOALS AND ENNrIRONMENT

Supporting the improvement methodology for the pur-
pose of tailoring the set of methods and tools to be used in a

project, requires quantification of how to characterize (I)
project improvement goals, (2) the particular project

environment, and (3) the effect of candidate methods and

tools on those goals and environment. The approach chosen
in this paper is to utilize error, fault, and failure analysis.

As discussed as part of the introduction section and reflected

in figure 1, utilizing defects is only one possibility for charac-

terizing improvement goals, environments, methods, and

took for the purpose of tailoring. However, it is an approach

that guarantees that we take all factors po_ibly affecting the

outcome of a project into consideration. The advantage of

this approach is that we can use data from previous similar

projects in the same environment; the disadvantage is that

we take an indirect characterization approach (by measuring

the impact of environments) rather than s direct approach

(by measuring factors of the environments themselves).

Indirect approaches allow precise characterizations of

environments by conducting pcst*mortem analysis of the

impact of environments and methods and tools in this

environment on quality and productivity; direct approaches

allow better characterization of new environments before any

projects are completed in this new environment.

CHARACTERIZING IMPROVEMENT GOAJ._

The approach to the quantification of goals is the

goal/question/metric (GQM) paradigm z * L , developed to

help us define the areas of all kinds of studies, in particular

studies concerned with improvement issues, and help in the
interpretation of the results of the data collection process.

The paradigm does not provide a specific set of goals but

rather a framework for stating goals and refining them into

specific questions about the software development process
and product that provide a specification for the data needed

to help answer the goals.

Using this paradigm, the process of quantifying

improvement goak consists of three steps:

1. Generate a set of goals based upon the needs of

the organization.

The first step of the process is to determine what it is you
want to improve. This focuses the work to be done and

allows a framework for determining whether or not you

have accomplished what you set out to do. Sample goals

might consist of such issues as on how to improve the set

of methods and tools to be used in a project with respect

to high quality products, customer satisfaction, produc-

tivity, usability, or that the product contains the needed
functionality.

2. Derive a set of questions of interest or hypothe_m

which quantify those goals.

The goals must now be formalized by making them

quantifiable. This is the most difficult step in the procem

because it often requires the interpretation of fuzzy terms

like quality or productivity within the context of the

development environment. These questions define the

goals of step 1. The aim is to satisfy the intuitive notion
of the goal as completely _nd consistently as possible.

!

i

I

I
I
I

I
I
I
I

I
i
i

I
I
I
I

I

I
I
I
l
I
l

l

li
l
l

l
l
l

I
l
I
l
l

3. Develop _ _.__.tof m_tr|_ ,,rid dinar!but!on= which

provide the information needed to smswer the ques-
tions of interest.

In this step, the actual data needed to answer the ques-

tines are identified and seeociated with each of the ques-

tions. However, the identification of the data categories is

not always so easy. Sometimes new metrics or data distri-
butions must be defined. Other times data items cu be

defined to answer only part of a question. In this case, the

answer to the question must be qualified and interpreted

in the context of the miming information. As the data

items are identified, thought should be _iven to how valid
the data item will be with respect to accuracy and how

well it captures the specific question.

In writJn K down Koala and qumtions, we must begin by
stating the purpose of the improvement process. This pur-

pose will be in the form of a set of overall goals but they

should follow a particular format. The format should cover

the purple of the process, the perspective, and any

important information about the environment. The format

(in terms of a generic template) might look like:

• Purpose of Study:

To (characterize, evaluate, predict, motivate) the (process,

product, model, metric) in order to (understsnd, assess,

manage, engineer, learn, improve) it. E.g. To evaluate the
system testing methodology in order to improve it.

• Perspective:

Examine the (cost, effectiveuees, correctness, errors,

changes, product metrics, reliability, etc.) from the point
of view of the (developer, manager, customer, corporate

perspective, etc) E.& Examine the effectiveness from the
developer's point of view.

• Environment:

The environment consists of the following: procure factors,

people factors, problem factors, methods, tools, con-

straints, etc. E.g. The product is an operating system that

must fit on • PC, etc.

Process QuustionI:

For each proce_ under study, there are several subgonk

that need to be addressed. These include the quality of
use (characterize the process quantitatively and assess how

well the process is performed), the domain of use (charao

terize the object of the proce_ and evaluate the knowledge

of object by the performers of the process), effort of use

(characterize the effort to perform each of the subactivities

of the activity being performed), effect of use (characterise

the output of the procure and the evaluate the quality of

that output), and feedback from use (characterize the

major problems with the application of the proeem so thtt

it can be improved).

Other subgoal8 involve the interaction of this pr_ese with

the other processes and the schedule (from the viewpoint

of validation of the process model).

Product Questions

For each product under study there are several eebgoals
that need to be addressed. Them include the definition of

the product (characterise the product quantitatively) and
the evaluation of the product with respect to s particular

quality (e.g. reliability, user satisfaction)

351

3-8

The definition of the product consists o(:

1. Physical Attributes. e.g. size (source lines, number of

units, executable linesl, complexity (control and data),

programming language features, time space.

2. Cost. e.g. effort (time, phase, activity, program)

3. Changes. e.g. errors, faults, failures tad modifications

by various classy.

4. Context. e.g. customer community, operational profile.
The improvement is relative to a particular quality e.g.

correctnees. Thus the physi_ charactcristics need to be

analyzed relative to these.

The improvement goals and questions in the appendix were

derived by applying this temphLte.

The idea of basing sound software development on pre-

cise formulation of project Soak or objectives is not new; it

is related to a number of approaches, e.g., Boehm's 'Goal-

Oriented Approach to Life-cycle Software (GOALS) 'm and

Gilb's 'Multi-Element Component Comparison and Analysis

Method (MECCA)"*. However, there are major differences

between these approaches and our improvement methodol-

on3' based on the GQM paradigm. In [k>ehm's approach,

major project goals are identified by using a 'software

engineering goal structure' tad means for achieving thcee

goals sre defined. This approach corresponds to the setting

up of goals in our improvement methodology (see step 2).

The GQM approach provides support for generating g<nds in

a more formal way (see our goal templates) tad deriving

quantifiable questions and metrics (see our proce_ tad pro-

duct related templates). GUb's approach is closer to our

GQM approach. However, the two major differences are that
the GQM approach formalizes the refinement of high-level

goals into metrics, and permits the interpretation of meas-
urement results in the context of a particular project

environment by allowing for subjective metrics in addition to

objective metrics.

CHARACTERIZING THE ENVIRONMENT

Characterizing the environment was one of the subgonJs

in applying the GQM paradigm to characterizing improve-

ment goals. The environment was characterized in terms of

subjective metrics such as 'to which degree were certain

methods or took used by the project personnel'. The prob-

lem with these subjective metrics is that it is hard to chores
methods and toot- based solely on such unprecise criteria.

It isOur _ to characterize the project environment as

objectively as possible. The approach chceen in this paper is

use error, fault, stud failure profiles for characterizing the

environment in a quantitative way. We are actually measur-

ing the impact of the environment on the quality of the soft-

wsre process and its resulting products. This indirect charac-

terization has the advantage of objectivity. We can either
use actually measured defect profiles or, if measurement

results are not available, hypothesized defect profiles. All

changes in a project environment eta expected to be
reflected in changing defect profiles. Unfamiliarity with the

application domLin can be expected to reeult in more appli-

cation errors, using z set of new concepts for structuring

software, e.g. using Ads as implementation language, can be

expected to result in more problem-solution errors.

A_uming we know the effect of certain methods tad

tools on defect profiles, it should be rehLtively easy to tailor

cue set of methods and tools to cope with defect profiles of a

CHAR.ACTERIZING METHODS AND TOOLS

The effectiven_m of the improvement methodology

depends on the amount of knowledge we have on the impact

of methods and tools on defect profiles. Unfortunately, we

do not have enough such knowledge yet. Most of the avail-

able knowledge is extremely environment dependent.

We have to start creating environment specific

knowledge concerning the effect of methods and tools. Where

not enough knowledge is available in terms of measured

results, we have Co add hypotheses in order to start using

the proposed methodology effectively. As we apply the

improvement methodology we increase our initial knowledge

based on analysis resulta derived during step 4 of our metho-

dology. Our goal must be the refinement of existing

knowledge sad the substitution of actual analysis results for
hypotheses.

Tables 1, 2, and 3 describe the impact of a small set of

methods and tools on preventing errors and detecting faults.

This knowledge is mostly based on actual measurement

resuita as far as detection is concerned s, sad hypotheses as

f_r as prevention is concerned. We selected methods and

tools which are either currently used or are candidates for

future use in the NASA/SEL environment. In most case the

names of the methods sad took s.re self-explanatory. How-

ever, the reuse method employed at NASA/SEL needs some

explanation: In the NASA/SEL environment applications of

similar type Lre developed over and over _ain; therefore,

not only code modules but especially whole specifications and

designs are reused with modifications. Without knowing

these specifics of ,;.e reuse method used at NASA/SEL the

imp_t of reuse in table 3 might look much too positive.

Both measurement results and hypothesis (see tables 1, 2,

and 3) are NASA/SEL specific. Therefore, the characteriza-

tions in these tables may vary significantly for different

environments. However. we expect the general pattern to be
more or less preserved.

Table 1
Fault Detection elsmified according to Scheme 2

METHODS + TOOLS

Functional Testnn&

StrucLural Testing

Code Rl_iuS

$yn_ Directed Editor

Fault Cl_ses

Omimion Commission

4- 4*

o

-I,- +

o

The impact of methods and tools is determined on a

subjective scale (-, -, o, +, ++). Characterizin$ the effect of
a method or tool with respect to a particular defect class as

'-' means that this method or tool is never able to detect or

prevent defects of this type, as '-', that it is unlikely that

this method or tool will detect or prevent defects of this

type, _ 'o', that, it is p_ible that this method or tool will

detect or prevent defects of this type, as '÷', that it is likely

that this method or tool will detect or prevent defects of this
type, and as '+÷' that it is certain that this method or tool

will detect defects of this type. [t is evident that only the

effect of (automated) took esa be cl*.saified as '-' or '@÷';

for _l (non-automated methods there is never a guarantee

that they will never or _lways detect or prevent certain

types of defects due to the fact that the abi|ity of human

beings is a deciding factor.

Table g,

Fault Detection elmmifled according to Scheme 3

+ +

F/d.ll+_

lanll. "elm <_l_slDai

(lqr ipwlm _) ,, + +

SMmz I_wsl I_l" + •

amlsm _ + m

Table $

Error Prevention elamifled xeeordin s to _heme 2

Inw C_mm

'DrWiW wL ,_1_ + + • • o •

+ + +

_ pNOlmmr "riMs + + 4* • • + +

_sm_s c_m_

(xmmm_ + + +

Rmm + + + + • •

I'_. IX_s L_I .s t • + + + •

J'CL_ - + + + + +

_ _ IMIIsr - * +.,I* +

DM_ Jdm_im + • • •

3_2

3-9

I

I

I

I
i

I
I

I

I
i

I
I

I
i
I
I

I

I

I

I

I
I

i

i

I
I

I

|
I
I

I
I
I

I

!
i

I
I

_PPLICATiON OF _ T_ORiNG PROCESS

The presc•t_l improvement methodok_y incl•ding the

approach to chtracterizin$ goals, environment, and methods

and tools by defect profiles was applied to • characteristic

project in the NASA/SEL environment. The project win

analyzed after completion, and based on the analysis results

recommend&tions were made for future projects o(the same

cises.

Some of the results of this improvement procem are

presented accordln s to the five steps of the improvement

methodology:

• Step 1: The project is characteristic for the clans of

ground support systems developed st NASA. Projects d

thin clans were built seversl times bdore; therefore, • very

hish amount of code wm reused from these previous pro-

jects. The software process for these clams of systems is

well established; wherena the procesc model wen not

changed over time, the set of methods and tools was f;ne-
tuned to the application from time to time. The mant4ge-

ment personnel (Sat line managers sad above) are

extremely experienced in this class of pro]ectm, whereas

lower-level personnel frequently chan_. Bued on the

continuity st the mana4_ement level, manN_,_rs understand
the design of the systems very well. The development pro-

cess is not supported by • very high number of anwmated

took; this fact is currently chlmginK in the NASA euvirc_

meat. An important characteristic of this eisseot projects

is the fact th•t the mana4gers are very familiar with the

future use of their system. As • consequence, • testing

method for system and acceptance test was established,

whose termination criterion is not decreeeins mare-time-

between-failures but just the completion of the set of test

emma derived from this knowledge coaesruing future use of
the system.

Table 4

E_-or Profile aecm_ms to Sehmne 2

ERROR CLASS

[Application

__0a

smmant_

Syutaz

Env_m,mt

[nforma_ MmmSmant

PERCENTAGE

S_

S_

S%

Looking at the error profiles in table 4, we recopise •

low number of application errors, a high number of

problem-solution errors, and • high number oC clerical errom.

The number ot application errors reflecte the extreme

familiarity with the .application; the number of problem-

solution and clerical errors csa be explained by tbe relative

inexperience of the the lower-level project personnel. The

high number of errors occurring during the design or coding

of a single component (see table 5) supports the hypothezis

that the high •amber of problem-sointion errors in table I,

can, in fact, be linked to the inexperience of the lower-level
personnel.

T_kS

Ers.m..Pm_acem,dh_toScimmel

ERROR CLASS

Requirements

Speeificstion

Design or lmplementt_ion

- of a _gie component

- of more thun one component

Use of Lusu_

PERCENTAGE

S%

78_

4%

8%

_his clamiScation scheme is slightly di[erent from
error seheme 1; data for error scheme I were not

avaiis_le for this project. As opposed to clamifying
errors by the time of their occurrence, here they m

classified by the project aspecte afected: require-

meats, speeiScation, design or implementation, and

use of luSuse.]

T_be

Fault__toSe2ben_Z

FA_TCLA_

ii i

Omim_

Commismon

PERCENTAGE

22_

76_

Tabls 7

Fsult ps_ s_eoed/mt to Sr2mmm 8

FAULT C_qSS

Control

(k)mputatlon

Data

Interface

- global data

- other

PERCENTAGE

2O%

353

3-10

The fault profile in table 6 reveals a percentage of omis-

sion faults (22_o) which is lower than the average in this

class of projects (this base line data is not included in the

tables). One explanation is the very high percentage of reuse

in this project.

The fault profile in table 7 supports findings reported

by Basili and Perricone*, that reuse results in a lower
number of control flow faults. According to the same study,

the high percentage of data faults is due to the inappropri-
ate method for writing specifications; these specifications

made it hard to understand differences between old algo-

rithms (from previous projects) and new algorithms (required
for the current project). The number of global data faults,

even in a Fortran project, seems to be unnecessarily high.

Failure profiles could not be measured for this class of

projects. NASA manages to have almost no failures during

operation. This fact is due to a very thorough testing process

and the perfect knowledge concerning future use of those

systems.

• Step 2: The project goals [or this cla_ of systems in the

NASA/SEL environment are to produce highly reliable sys-

tems and to produce them on time. The improvement goals
are to decrease error and fault classes which were identified

as overrepresented in step 1 by changing the set of methods

and tools.

• Step 3: Recommendations for future projects ba_ed on les-
sons learned from the analysis of this project are" A number

of recommendations for future projects could be made based

on lessons learned from the analysis of this particular pro-

ject. The fact that these recommendations are not very

surprising does not affect the importance of the analysis

results. The objectivity of qua_atitative analysis results, even

if they are not surprising, increase the credibility of these

results and the justification of the improvement recommen-

dations be_ed upon these analysis results. Another advan-

tage of quantitative analysis results is that they might allow

evolutionary improvement by revealing the problem sources

rather than improper improvement recommendations or

revolutionary improvement.

- Train (lower-level) personnel better with respect to algo-

rithms and technologies to be used; use studies of solutions
of this cla_ of problem. This approach promises to lower

the number of problem-solution errors.

- Integrate more automated tools into the software process

for preventing clerical errors; candidate tools (according to

table ??) _re configuration control tools, PDL processors,

and syntax-directed editors.
- Indications that reuse lowers the number of omission faults

suggest to encourage the implementation of reuse stra-

tegies in future projects. The detection of omission faults

is very difficult; therefore, reuse as a prevention method is
even more important.

- Better specification methods and tools should be introduced

in order to decree_e the number of data faults due to

misunderstanding of the specifications written according to
the currently used method.

- The high number of global data faults is mostly due to

changes in common data structures without updating all

references. It ehou|d be easy to implement a tool keeping
track of all common data structures and related references.

In the ease of changing data structures all affected

references could be updated.

These recommendations promise to improve the development

of future systems of the same class. This assumption has to

be verified by performing steps 4 and 5 of the improvement

methodology in future projects.

FOR THE IMPROVEMENT METHODOLOGY

All steps of the methodology for choosing, evaluating,

and improving process models and their support by methods

and tools require automated support. In 1986 we started the

TAME (Tailoring A Measurement Environment) project
which aims at the development of a prototype environment

to support all kinds of quantitative evaluations.

The objective of the TAME prototype is to support

qua_titative and qualitative evaluation of Ads projects (pro-
ce_ find product aspects) in the framework of the GQM

paradigm. This includes (1) setting up the environment for

evaluation (deriving goals, questions, metrics, establishing

protection mechanisms), (2) conducting the actual measure-

ment and evaluation activities, and (3) maintaining a histori-
cal database. In the long-run such a system could become

an integral part of a comprehensive Software Development
Environment.

The requirements for the TAME system provide for

many features which amiat the user in all kinds of measure-

-ment activities,including those required in the context of

thismethodology. These features include:

• generating evaluation goals,questions,and metrics.
Goal-oriented evaluation will be conducted in the context

of the GQM paradigm. The formulation of specificgoals

and corresponding questions is not an easy ta_k; the

TAME system willgive assistancein performing this task.

• collecting data.

The metrics or distributions necessary for addressing par-

ticular evaluation questions may originate from different

sources, e.g.,forms filledout by development or mainte-

nance personnel, source code, all kinds of documents, run-

ning systems. The computation of the metrics is per-

formed by a set of measurement toolsanalyzing these raw

data, such as static code analyzers. The TAME system

will support inputing and storing the raw data and com-

puting the metrics required for evaluation purposes.

• validating collected data.

All collected data (especially those collected by forms) are

subject to errors. The system cannot guarantee complete-

hess find correctness in a strict way. For example, how

should the system judge whether the reported schedule for

completing some development task is correct or not?

However, it can guarantee partial completeness and con-
sistsncy; e.g., it can check that the schedule for completing

all modules of a system is consistent with the schedule of

the whole system.

• storing data in a data repository.
All datffi have to be stored in a data repository as soon as

collected. Data have to be identifiableaccording to vari-

ous criteria,e.g.,when collected,from which source (type

of document, version, product name, etc.),time period

covered. In addition, the system has to maintain con-

smtency of the data repository.

I

i

I

I
I

I

I
i

I

I
I

I
I

I

I

I

I

I

I

l

!

!

l

!

l

II

I

l

l

II

!

II

l

!

l

• retrieving iuformffition for uswering particular evaluation

questions.

The TAME system will provide • basin for answering the
user's evaluation questions based on information available

in the data repmitory.

• evaluating datL

The TAME system will provide gcnd-direeted interpreta-
tion sad evaluation of dat_ according to sa s priori cats.

blkhed framework (me the first feature)).

• running stati-ticsd aaalymb-
The TAME system will provide statistical saalym pack-

ages for computing atatistical significance of evaluation
results.

• m#intaining a historical knowledge base.

The TAME system will create sad maintain a historical

daxt base over time. The purpose of this data base is to

allow better interpretations of analysis results rehttive to

historical baselines reflecting the characterbtics of • par-

titular environment. Whereas all input into the database

(see the fourth feature) is rebated to data rep_ing indivi-

dual systems, maintaining a historical database requires an

additional dimension by creating bmm-llncs acrves systems

or even environments.

A macroscopic view of the TAME architecture shows the

system divided into four hierarchically organized fryers:

I USER INTERFACE LEVEL [

t

[EVALUATION

I[1MEASUREMENT LEVEL

DATA REP_

Fts. 4. TAMIg .mwehtteetu_

1. The User Interface Level implemente the appmprhtte
means of interacticm between users sad TAME. In addi-

tion, the mmr interface level contains • tool for setting up
the measurement and evabtatioa euviroumeut for each

individual user (=- czeatiag or tuning sa appropriate

instance of the evaluation level). Ah important part of
this measurement sad evaluation environment is the

actual set of goals, questions, aad metric&

2. The Evaluation Level implements the appropriate

environment (probably set up by the user interface level).

Such an environment is characterized by gods, questions,

me*.._.cs, _..nd _.ntc=pretzt:,on p_c_edures, _ we_l _s t protec-

tion profile which defines legal acces8 paths to the me•s-

urement and data repmitory level for this pa.rticultr user.

This level triggers the computation of the appropriate

metrics (by either activating the appropriaJce meusurement
tools or by acceesiag the data repository level), and pro-

rides adequate interpretation. A separate instance of this

level might exist for each individual user.

3. The Measurement Level consists of tools for computing

metrics. Examples of such tools are tools for computing

data binding metrics, structural coverage metrics, or com-

plexity metrics.

4. The Data Repoeitory Level provides the infraltructure
for various types of evaluation. This level allow8 storing

and retrieving all kinds of as/'twace rebated dats. This

level should be as independent 8s p_ible of •.partieular

data buse muagemeut system or • concrete date base

structure; the dst_ repository should be implemented 8s

an almtract data type hiding all these implementation
details.

Another importut general requirement for this TAME data

repository is to be flexible in various ways; the data repusi-

tory must sdlow

- changing {if poasible extending) the data bsse structure of
the repository lure|,

- changing the acce_ procedures to the rep<mitory level,

without affecting existing 'user' programs (measurement

took, eveluation progrmns) more than absolutely ueceasmT.

T 9 make it clear, by flexibility of the repceitory level we do

not meln that the repasitory level may not be changed in

the case of data bmbe changes; what we m een is, that in this

cuse ONLY the repce6tory level has to be chuged, while

retaining the 'user' program8 (measurement tools, etc.)

without changes.

An interesting aspect from • research perspective is the

fact that this project requires and provides opportunities for

cooperation between software engineering, data base, and

artificial intelligence. For more details concerning the

TAME project the reader is referred to TAME project

repoFtStlk 11

SUMMARY AND FUTURE RESEARCH

Variou versions of the improvemeut methodology have

been applied in several industrial settings. The basic

approach has evolved from the work performed in the

NASA/SEL environment, where most of the defect

claeeiflcation schemes presented in this paper were developed

sad applied to improve the development environment. This
methodology is expected to be refined in the future based on

experience from future Lpplic_iou.

Using defect profiles for characterizing improvement
(_goals sad environments sad tailoring methods sad tools

towards these quantified goal8 and envirouments hks proven

to be feasible sad beneficial. However, as indicated in the

introduction, defects a_e only one approach of many to

characterize improvement goals, environments, and the

impact of methods sad tools. We will continue to improve
defect cleesification schemes for the purpoec of charucteriza-

355

3-12

I

lion u weU u inv_tig_ing |dteruLtive approaches to char-
acterisltion.

The TAME prototype is expected to support all kinds

of me_urement, an*lysis, and evaluation needed in the con-

text of this tailorins approach. In the long-run the TAME

project k expected to derive guidelines for future software

development environments. Those future software develop-

ment environments are expected to include the software pro-

ce_ itself as one variable. Those environments are expected

to recognize the fact that quality software can only be built

in a productive manner if the process for building the soft-

ware is tailored to the particular project goals and environ-

ments in a natural way. Future software development

environments will not provide just a set of construction cools

(u moat state of the surt development environments to

today) or support one particular proce_ model. Instead they

will provide (1) the flexibility of cbo_ing the appropriate

global procem model and tailoring it to specific project goals

and environment characteristics, (2) the flexibility of choos-

ing methods and took (for construction and evaluation)

which fit into the defined proce_ model framework, (3) sup-

port for tracing quality and productivity throughout the pro.
teas in a quantitative way, and (4) support for evaluating the

effectiveness of the chosen software process model as well as

individual methods and took as far as meeting quality and

productivity goals _re concerned. The k, tter evaluLtiou

activity can be performed on-line for the purpoec of provid-

ing feedback into ongoing project or poat.-mortem for the

purpose of learning for future projects.

A first TAME prototype is currently built for an Ads

environment _s. There are many reasons for this decision. (1)

NASA is considering Ads as the langu_e for building Space

Stations, (2) there is a thrust towards developing program-
ming support environments for Ads, and (3) it is believed
that more and more environments will move from traditional

langut4_es to Ads as the implementation tLnguLse Lad have

to confront the problem of choosing an appropriate procese

model including methods and tools. In this context the

tailoring of software process modek will be very important;
it can be expected that Ads environments will not only differ

from traditional environments in the sense that different

methods and tools are going to be used, they might also

require completely different process models.

Future use of this methodology will result in accumu-

lating more and more knowledge concerning the impact of

methods and took on vLrious defect types; this in turn will
make the tailoring methodology more effective. In addition,

the TAME prototype will he an incentive and vehicle for

applying the methodology in various industrial environ-
menlo.

ACKNOWLEDGEMENTS

The authors would like to thank Frank McGarry of

NASA/GOddard Space Flight Center and Dr. David M.

Weiss of the Office of Technology Assessment for their help-

ful comments on earlier versions of this paper, and the

reviewers for helping us better express our ideea.

[I] V. R. Buill, D. M. Weiss, "Evaluating Software

Development by Analysis of Changes: The Data from

the Software Engineering Laboratory," Technical

Report TR.123fl, Dept. of Computer Science, University

of Maryland, College Park, December 1982.

[2] V.R. Basili, D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data, _ IEEE Transac-

tione on Software Engineering, vol. SE-10, no.3,
November 1984, pp. 728-738.

[3] V. R. Basili, B. T. Perricone, _Software Errors and
Complexity: An Empirical Investigation," Communica_

tions of the ACM, vol. 27, no. I, January 1984, pp. 42-
52.

[41 V. R. Basili, R. W. Selby, Jr., "Data Collection and

Analysis in Software Research and Management, TM in
Proc. American Statistical Association and Biometric

Society Joint Statistical Meetings, Philadelphia, PA,

August 13-16, 1984.

[5] V.R. Basili, E. E. Katz, IN. M. Panlilio-Yap, C. Loggia

Ramsey, S. Chang, "Characterization of an Ada Soft-

ware Development," IEEE Computer, vol. 18, no. 9,

September 1985, pp. 53-65.

[6] V. R. Basili, "Quantitative Evaluation of Software

Engineering Methodology," in Proc. First Pan Pacific

Computer Conference, Melbourne, Australia, September

1985. [also available as Technical Report, TR-1519,

Dept. of Computer Science, University of Maryland,

College Park, July 1985].

[7] V.R. BMili, _Measuring the Software Process and Pro.

duct: Lessons Learned in the SEL," in Proc. Tenth

Annual Software Engineering Workshop, NASA God-

dffird Space Flight Center, Greenbelt MD 20771,
December 1985.

[8] V. R. Basili, R. W. Selby, Jr., "Comparing the
Effectiveuc_e of Software Testing Strategies," Technical

Report TR-1501, Dept. of Computer Science, University

of Maryland, College Park, May 1985.

19] V.R. Basili, A. J. Turner, _Softw_re Development Pro-
ce_ Models," Technical Report, Department of Com-

puter Science, University of Maryland, College Park,

MD, forthcoming.

{10] V. R. Bnsili, H. D. Rombach, "The TAME Project:
Motivation, Background, Ideas and Objectives," Techn-

ical Report TR-1764, TAME Report TAME-TR-1-1987,

Department of Computer Science, University of Mary-

land, January 1987.

{11] V. R. Bseili, M. Daskalantonakis, A. Delia, D. Double-
day, L. Mark, K. Reed, H. D. Rombach, D. Stotts, J. A.

Turner, S. Wang, L. Wu, S. Xiao-Hong, "The TAME
Project: Requirements and System Architecture,"

Technical Report TR-1765, TAME Report TAME-TR-
2-1987, Department of Computer Science, University of

Maryland, Janua_-y 1987.

[12] V. R. Buili, H. D. Rombach, _TAME: Tailoring an Ada
Measurement Environment, _ Proe. of the Joint Ada

Conference, Arlington, VA, March 16-19, 1987.

[13] B. W. Boche, "Software Engineering Economics, _
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

356

3-13

I

I

I
i
I

I
I
I

i

I
I

I
I
I
i

I
I

I
I

m

I

!

i

B
!
!

!
!
!

!

l
t
i

!

!
!
B

g

i14] T. GiFb, ;Software Metrics," Winthrop Publmhem, Inc.,
Cambridge, Msssachusette, 1977.

[15] "IEEE Stsadzrd Glcsmu7 o/"SoFtware Ea_neerias Ter-
minolosy," IEEE, 342 E. 471h St., New York,
Rep_EEE-Std-729-IgS3,l_J_.

{16]W. L. Johnsoa, St. Drsper, E. Solowty, "Clsmifyins
Buss is a Tricky Busineas," in Proc. Seventh Annul/
SoftwLre Ens:meerin s Workshop, NASA, C,odd_ni
Space Flight Center, Greenbelt MI) 20771, .December
198"1.

[17] M. Lipow, *Predictioa of Software Fzilure_" The Jour-
nsd cd"Systems sad So/'twscs, vol. I, no. I, 1979, pp.
71-76.

357

3-14

[18] T. J. Ostrznd, E. J. Weyuker, "Sc(twsm Error Data
Collection sad CsteSoriz_/on," in Proc. Seventh
Annusd Software En_ueer/ng Workshop, NASA,
C,oddsrd Space Flisht Center, Greenbelt MD 20771,
December 1982.

[19] "SortwsreEnsineerins _r7 (SEL_.Dss_ Brae
Orpaizax/on sad User's Guide," NASA, O_,oddard Space
F_isht Center, Greenbelt]_[D 20771, SEL-81-I02, July
1982.

120J R. H. Thsyer, A. Pyzm', sad IL C. Wood, "The Chsl-
lense of Software Ensineerin z Project Msas4Pment,"
IEEE Computer Mssssine, voL 13, no. 8, Ausust 1980,
pp 51-50.

i
I
I

I
i

I
I

I

I
I

I
I

I
I

I
I
I

l
I

I

I

I
I

I
I
I

I

I
l
I

l
I
l

I

l
I

I
l

TAME:

T._[LORING A.N ADA TM MEASUREMENT ENVIRONMENT

Victor R. Basili and H. Dieter Rombaeh

Department of Computer Science
University of Mar/land

College Park, MD 20742, USA

More and more project environments will make the tran-

sition from traditional implementation languages to Ada. In

this context, many open questions need to be answered, e.g.,

whether or not Ada language features and concepts axe used

appropriately, and how Ada projects should be managed and

supported by methods and tools. It is therefore necessary co

measure and evaluate the quality and productivity of process

and product aspecte of Ada projects. This can be done by

either conducting case studies of ongoing Ada projects or

experiments in controlled environments [n both cases concrete

measurement and evaluation goals need to be established in a

systematic way, measures need to he derived that can help in

achieving these goals, and the necessary data need to be cog

letted, validated and interpreted. We have established a

methodology that allows us to perform these activitles in a

systematic way. However, the methodology must be supported

by automated tools in order to allow on-line feedback of

evaluation results into ongoing projects. [n the long-run, these

t_ols for on-line feedback should become part of each APSE

supporting the decision making process of management,

development, quality muraace personnel, and others. Such

information would be based on data from the current project

as well as previous projects in the same and other environ-
ments. In this paper we present and discuss the TAME

(Tailoring an Ada Measurement Environment) project which

aims at the deve[opmeut of a prototype measurement and

evaluation environment that supports all the previously men-

tioned activities including the process of setting up measure-

ment and evaluation goals and deriving supportive measures.
We discuss the TA.'viE requirements and architectural desil_a,

t,he status of the first prototype, and the expected impact of

this project on Ada projects and APSEs. The prototype

currently under development does not interface with an APSE;
however, it is designed for being inte_'ated into an APSE in
the future.

More and more project environments will make the tran-

sition from traditional implementation languages to AdL In
this context, many open questions need to be answered, e.g.,

whether or not Ada lansus4_ features ud concepts are used

appropriately, and how Aria projects should be managed and
supported by methods and took

AAa is • tra_mwk _ tke U.S. Delpam.m4mt d Odemm - Ada Joist Pmlp.sm OMee.

Support for thk rwesreh mM provided ill plWt by NASA Ilrut ,_G-5123 ud Ol_

_t _IOQ014 _ {M33 to the Uaivsm_y d Marylud.

It is therefore nece_ to memure and evaluate the

quality and productivity of proem and product aspects of Ada
projects. Thm can be done by either conducting cane studks of

ongoing Ada projects or experiments in controlled environ-
mencs. In both cases concrete mensuremeut and evaluation

goals need to be established in a systematic way, measures

need to be derived that can help in achieving these goals, and

the necessary data need to be collected, validated and inter°

preted. We have established a methodology that allows us to

perform these activities in a systematic way. However, the

methodology must be supported by automated tools in order

to allow on-line feedback of evaluation results into ongoing

projects. In the long-run, these tools for on-line feedback

should become part of each APSE supporting the decision
making process of management, development, quality

_uranoe personnel, and others. Such information would be

based on data from the current project as well as previous pro-

jects in the same and other environments.

In this paper we present and discuss the TA_VLE (Tailor-

ing an Ada Measurement Environment) project which a_ms at

the development of a prototype measurement and evaluation

environment that supports all the previously mentioned activi-

ties including the procens of setting up mensurement and

evaluation goals and deriving supportive mensures. We discuss

the TA_E requirements and architectural demgn, the status of

the first prototype, and the expected impact of this project on

Ada projects and APSEs. The prototype currently under

development does not interface with an APSE; however, it is

designed for being integrated into an APSE in the future.

The TAME prototype provides means for collecting, stor-

inK, and validating data, computing measures, and interpreting

computed values in the context o[particuhLr evaluation goals.

A macroscopic view of the TA_'v(E architecture shows the

system divided into four hierarchically organized layers (from

top to bottom): the user interface level, the evaluation level,

the measurement level, and the data repository level. The

measurement level consists of a set of took allowing for the

compulsion of various me.urea from documents or previ-

ously computed primitive measures stored in the data repcm-

corr. The user interface level supports, besides providing for

the interaction between users and the TAME system itself, the

formulation of evaluation goals, their quantification into

analysis questions and measures, and the interpretation of

measurement results in the context of the ociSinal evaluation

KOala. The evaluttion level drives individual evaluation

serious. Bsmd upon s_ds, questimm, and meanurss set up by
the user interface level the evaluation level computes the

a4_propriste measures and interprete them according to

318 Joint Ads Confem'tce 1967

3-15

predefined rules. T.a_fE, as opposed to other approaches to

automating measurement and evaluation, does support a top-

down approach to measurement and evaluation (i.e.,the user

first defines what he wants to evaluate, quantifies it, and

thereby creates the whole picLure for interpreting mea-_urement

results properly) rather than the traditional bottom-up

approach (i.e.. automate measures and leave it up to the user

how to use those measures).

The TAME project status is currently as follows: The

architectural design of TAME is completed and prototypes of

three measurement toolsas wellas the data repositoryand the

user interfaceand evaluation levelare being implemented. The

T._ME prototype is to be implemented mainly in Ads for a

SUN-3 under UNIX.

The TAME prototype,stand alone will provide a useful

vehicle for investigating Ads related research questions.

Integrated into an APSE, it willbecome a valuable manage-

ment tool supporting a variety of project activitiesranging

from designing the software process and providing on-linefeed-

back into ongoing development activitiesto post mortem

analysis. Such a systematic approach to measurement and

evaluation will allow us to learn from project failures and

successesand, consequently, do a betters_obin future projects.

Research Backzround

Over the last decade lots of research was done towards

better understanding of the impact of various aspects of the

software development process on productivity and quality of

the resultingproducts. The Universityof Maryland has a long

tradition in conducting this type of research. [n recent years

we concentrated on understanding the impact of isolatedpro-

duct and process characteristics(e.g.complexity) on certain

quality and productivity aspects. Today we think it is neces-

sary to take a more goaboriented approach; we startwith par-

ticularqualityand/or productivitygoals,make them accessible

to measurement by identifying appropriate measures, and

develop a framework for interpreting those measures in the

context of the original goals. Whereas the traditional approach

can be described as bottom-up, the new approach is definitely

top-down. We believe that it made sense to start out the field

of measurement and evaluation bottom-up for the purpose of

learning. Now, _ter we accumulated some knowledge we have

to start utilizingmeasurement and evaluation procedures for

solving real software problems by orienting them towards

those problems.

Major research projects and lessons learned from these

projects are summarized in the following two subsections.

They axe divided into general measurement and evaluation

research projects and Ads-specific research projects. The

TAME projectcan and should be understood as building upon

and continuing these previous research efforts.

General Measurement and Eva.luation Research

The lack of quantitative approaches to software processes

and products became evident in a study a showing that

methods and tools are frequently used incorrectly in industrial

environments and, worst of all, that in many cases there is no

awareness of this improper use. Measurement wasn't organ-

ized,was locallydefined for each project and was bottom-up

(i.e.singlelow-level measures were often used to explain high-

level issues such as quality and productivity). Single measures

are not powerful enough to characterize complex software

processes and products; the idea of the characterizingvector of

measures was used by Baziliand Turner _ to capture a set of

qualitiesin question. Other important milestones were recog-

nizing the importance of designing experiments thoroughly',

recognizing the impossibility of using other people's models

without tailoringthem to your specificenvironment 4,and the

necessity of associating interpretation mechanisms with meas-

urest_. An important concept supporting the transition of

measurement and evaluation resultswas the concept of "meta

models and measures "_. More recent research projects concen-

trated on improving and formalizing a methodology for

evaluating and improving various aspects of software processes

and products: The notion of goals, questions and measures

(GQM paradigm) for approaching measurement and evaluation

problems was firstused by Basili and Weiss L',formalized by

Basi[i2, and augmented for the purpose of tailoringsoftware

processes to project quality goals and concrete environments

by Basiliand Rombach'. Since then this approach was applied
• ILl&l*

in a variety of case studies and controlled experlments

Basili and Selby_°developed a classificationscheme for distin*

guishing among experiments on the basis of expected

cost/payoff and confidence in theirresults.A firststep towards

formalizing existing knowledge and allowing reasoning about

this knowledge was the development of an expert system pro-

totype 7

Ads Suecific Research

At the University of Maryland we had the opportunity of
monitorin¢" some of the very early Ads projects at GE* and

NASA =4 This enabled us to identifytypical Ads problems*, to

tailor me=urement and evaluation methods to Ads project

environments z_s_and to suggest improvements and solution to

some of the identifiedproblems. In addition, a trainingmetho-

dology was developed for NASA and a graduate levelAds

course (Software Design and Development in Ads) was

developed and taught at the University of Maryland Both, the

industrialtraining and University course did cover syntax and

semantics of Ads as well as concepts of Ads and design

approaches suitable for Ads projects. As part of the Ads

course taught at the University of Maryland, experiments were

conducted investigating the impact of Ads on maintenance

and the suitability of various design techniques for Ads

development projects'7.

TAME Reouirementa

Based upon the published papers (see previous section)

and other unpublished work and experience the following les-

sons can be learned for incorporating measurement and evalu_

lion into (Ads) development projects:

• Quality cannot be tested .into software, it has to be

developed a priori.

• Quality and productivity can only be controlledeffectivelyif

we are able to define quality and productivity goals, to quan-

tify them using objective and (where necemaxy) subjective

measures, and to provide interpretation guidelines for meas-

ures in the context of the originalgoals.

• All project environments are different;even differentprojects

in the same environment are frequently different(e.g.as fax as

personnel experience, type of application, resources axe con-

Joint Ada Conference 1987 319

3-16

I

I

I
I
l

I
I
I

I

I
I

I
I
I

I
I
I

I
I

i

II

II

II
II
i
II

I

li
i

I

l
i
li

i

II
B
i

B

cerued), and need to be tailored towards these changing

environment factors
• Methods and tools supporting pa_icular softwm'e processes

need to be evaluated as far as their impact on achieving eats-

blished quality and productiv_y goals are concerned.
• The software process needs_to be prepared for meamurement

and evaluation; we can only measure existing products and

data.

• Making the process model itself a varinbls of a softwace pro-

ject requires high flexibility from project management person-

nel; managers need m adjust to constmatly changing software

processes.
• Using new methods (including the one suggested in this

paper for establishing evaluation goals and quantifying them)

requires extensive trmning.
• Measurement and evalu_lon need to be supported by took

am much as Ix_sible.

These lessons learned stats process requirements for sound

support of softwaxe projects by measurement and evaluation.

In the following subsections we describe the TAME require-

ments which correspond almost one to one to these process

requirements.

Prodqct PereDe_:tive

In the long-run, TAME is designed to interlace with

existing APSEs. However, in this paper we limit the discus-
ainu to the measurement and evaluation features of TAME

Thm means, we consider TAME being a stand-alone measure-

meat and evaluation system; interfaces to APSEs are con-

sidered only to the extent to which they are necesasxy for

accessing project documents such as code or design documents

for the purpose of measurement.

Without making any Lrchitectural decisions we cas

assume the following logical structure of the TAME system:

T._ME

"' User Interface Level]

! '1Data Repository Level

Fi.rure 1: Lofical TAME Structure.

320 Joint Ada Conference I_7

The User Interface Level provides the appropriate meffias
of interaction between users and TAME. In addition, the user

interface level must conrad3 support for setting up the meas-
urement and evaluation context for each individual evaluation

task tLilored to a particular project environment, for inputing

project data, and for producing a variety of reports.

v " v needs to run individual evaluation

serious in the framework of previously defined GQM models.

The appropriate measures need to be computed by either

acceming the data repository or activating the corresponding

measurement tools, and interpreted adequately in the context

of the origiuM evaluation Soal.

The Measurement Level needs to consist of an open-
ended set of took _llowing the computation of process rand

product related mensur_ from project information stored in
the data repository.

The Data Re1_o_itorv Level provides the infrastructure

for various types of evaluation. This bevel allows storing and

retrieving all kinds of software related data; this includes data

accumulated by constructive tools (all kinds of project docu-

ments.from requirements to code, etc.) as well as data accumu-

lated by evaluative tools (test data_ error data, measures, etc.).

This level should be as independent am po_ible of a particular

data bane management system or a concrete data base struc-

ture; the data repository should be implemented ms an abstract

data type hiding all these implementation details.

The individual functions provided by the TA_ME system

can be categorized as follows:

• Gener•ting GQM (goal, questions aamd re•m)
modedm for ev_luatio• 8e_iom*. Goal-oriented evaluation

should be conducted in the context of the GQM psradigm s.

The development of a GQM model for a paxticul*r evaluation

goal consists of specifying the goal ,rid deriving corresponding

quantifiable questions; doing this is not an easy task. The

TAME system assists in performing this task.

• Mesmurin$ and evaluating bmmd upo• • GQM model

Conducting an evalu_ion seesmn requires one or more of the

followingfeatures:

- Collecting da_. The measures or distributionsneces-

sazy for addreming pazticulazevaluation questions may ori-

_inate from different sources, eg., forms filled out by

development or maintenance personnel, source code, all

kinds of documents, running systems. The computation of

the measures is performed by a set of measurement tools
analyzing these raw data, such am static code analyzers. The

TAME system supports inputing and storing the raw data

and computing the meuures required by a pacticular GQM
model.

- Validating collected darn. All col[ecteddata (especially

throe collected by forms) are subject to errors.The system

cannot guarantee completene,m and correctness in a strict

way. How should the system judge whether the reported
schedule for completing some development task is correct or

not? However, it can guarantee partial completeness and
consistency; e.g., it can check that the schedule for compbe_-

ing all modules of a system is consistent with the schedule of
the whole system.

- Storing data in • d•ta repository. All data have to be
stored in z data repository as soon am collected. Dn_a have

3-17

to be identifiable according to various criteria, e.g., when

collected, from which source (type of document, version,

product name, etc.), time period covered. In addition, the

system hen to maintain consistency of the data repository.

In addition, a historical data base has to be maintained over

time. The purpose of s historical data base is to allow better

interpretations of analysis rear'Its relative to historical base-

lines reflecting the. chsracteristios of a particular environ-
meat.

- Retrievins information for answering particular

evaluation questions. The TAME system provides a basis

for answering the user's evaluation questions based on infor-

nation available in the data repository.

- Interpreting measurement data. The TAME system

provides goal-directed interpretation and evaluation of data

according to am a priori established GQM model. The sys-

tem should prohibit access to data without defined purpose.

- Running statistical analysis. The TAME system pro-
vides statistical analysis packages for computing statistical

significance of evaluation results.

User Characteristics

A potential user of the TAME system is any member of

an Ads. project (manager, developer, qa personnel, etc.) or a

researcher. The TAME system should be user-friendly in the

sense that it provides different user interfaces for the novice

(menus) and the experienced user.

As soon as we interface TAME with construction oriented

conventional APSEs, the corresponding constructive tools

become an additional class of 'users' of the TAME system.

These development tools might want to activate TAME for

three purposes: (t) to input development information (designs,

code, etc.) into the data repository, (2) to get immediate feed-

back to the user of the development tool concerning the

"goodness" of his task, and (3) to record data regarding the

usage of the APSE itself. These development tools might also

want to access the data repository in order to provide the user
with feedback relative to some baseline data.

Each of these eventual 'users' wants to perform one or

more of the previously lis_ed TAME functions. Those functions

should only allow access'to information the corresponding user

is authorized to access,and they should only allow access in

authorized modes (read only,write,etc.).

General Constraints

This section lists all constraints that will limit the

developer's options for designing the system:

Homogeneous User Interface:Homogeneity of the TAME

user interface is an important _ue from two perspectives: (1)

a uniform acce_ model, and (2) a uniform usage model. It is

important to allow for consistent and easy access to the

TAME system (e.g., a menu system) which allows all subsys-

tems to appear as part of one single homogeneous system. [n

addition, it is important to provide the user with one single

homogeneous model of the performance of the TAME system.

The system should not be viewed by the user an allowing him

to gather data, it should rather be viewed as allowing him to

reform evaluation tasks supported by data whenever necessary

and helpful. Means for achieving this second aspect of user

interface homogeneity is the GQM paradigm. The ONLY way

of using the TAME system is to define your evalu'_tion goal in

terms of a GQM model and then execute this model.

3-18

The TAME system is an open-ended system
in two respects. It has to allow for the addition of new evalua,

tion models and the addition of new measurement tools. Some

of these new measurement tools may use the output from

already existing tools The desired extsnmbility is achieved by

supporting the generation of new evaluation models through
TAME, and by providing for mechanisms for the inclusion of

new meusurement took. These mechanisms include the easy

modifiabilityof the TAME Data Repository (functional data

repositoryinterfacesad underlying data base).

Portability: The TAME system will be used in different

project environments. Therefore, the need for transporting
TAME must be anticipated. The ease of transporting a sys-

tem depends on whether the environment-specific anpects are

encapsulated in a small number of system modules or spread
randomly across the entire system. Especially the user inter-

face and data repository levels will be a_ected by environment

dependencies.

Security will be provided _ three points in the

system. Control will be exercised at the command in the user

interface, and at the data repository level for each individual

access to the data base. In addition, the running of ah evalua-
tion session in the evaluation level will also be under the con-

trol of the security system, providing a means of regulating the

precise use made of the information available within TAME,

and its interpretation. The security subsystem will allow for

the creation and control of user-specific views of the TAME

functionality and information. Each user will be restricted to

the set of TAME functions, information related to one (or

more) project(s),and restricted to certain information with

respect to a particularproject (certainsubsystems, only design

documents, only information generated within a specific period

of time, etc.) which is necemary to perform his job depending

on his role in a software project.

Configuration Management and Control: In the TAME

system we have to deal with at least three differentkinds of

configuration problems: (a) the conventional software,project

configuration problem, dealing with different versions of

differenttypes of documents, (2) associatingmeasurement and

evaluation results with the project documents from which

these results were derived, (3) mmociating measurement and

evaluation results with GQM models based upon which those

results were derived, and (4) administrating security and

configuration management & control profiles.A configuration

strategy will be developed which meets the specificrequire-

menus of TAME system. Each individual access to the TAME

data repository has to be validated by the configuration

management and control subsystem.

Data Revositorv" The TAME Data Repository level con-

tains all information developed during a software project

including information generated by the TAME system itself.

The TAME Data Repository provides the central means for

communication between different subsystems of the TAME

system ms well as communication between the TAME system

and APSEs. The TAME Data Repository is to be implemented

as an abstract data type allowing access to data only through

explicitly defined access procedures. This set of access pro-

cedures should remain unchanged even in the event of replac-

ing one data base management system by a different one or in
the event of transporting the TAME system to another

environment (hardware/software). The fact that nobody has a

good understanding of what a reasonably general and complete

set of access procedures is, we will Mlow each TAME subsys-

Joint Ada Conference 1987 321

l
I

I
I
l

I
l

I

I
I

I

I
I
I
l

I
I
I

l

I

I

l

I

I

I

I

I

I

i

I

I

l

I

l

l

tern or measurement tool .to have its own privace set of access

procedures. Over time, we saticipzte to merge all these indivi-

_1,al sets of •ccess procedures and create one single functiona/
interface for the T._IE d&ta repository.

T._,_ as a Distributed System: TAME rely ultimately

run on a hierarchy of machines sad must therefore be imple-
mented with this in mind. T_ne system's division into levek

will allow this to be _ehieved. One possible scenm-io is to hvst

the TAME user mterface level on workstations, and all the

other levels on s mainframe.

T.M_4E as s Re'arch Tool: TAME isnlso intended to be

used as a tool for research. In fact, TAME will provide •

unique environment for the evaluation of an extraordinarily

wide range of theories sad models, including the impact of

project orgaaizstion, the effect of design paradigms, the aceu-

racy of estimating procedures, the impact of project orKaniz*-

tions, patterns of commud umqle etc.. etc.. Thin usage of

TAME. as oppol_ to its ues4e in the context ,)f , software

project, will affect es_.*cially security po!_.;es *--qd _esib,_-

ways of accessing reformation in the TA_ D&ta Repository.

A researcher might want to play some kindro _ super-user role,
and he wants to compute certain measures without having to

develop GO_ models; the latter problem can be resolved by
providing built-in models for accessing individual data without
loss of interface uniformity.

TAME Arehite_ure

A first implement_ion cd" the TAME requirements is the

a_'chitectural desilpm presented in this section. The ,a-chit_urLi

TAME desip refines the logical four level structure in §lrure I

into * number of subsystems, ami$1m the functions specified in

the requirements section u well am additional implement_ion-

specific functions to these subsystems, and specifies the

interaction among these subsystems.

li User Interface Management
I , User IF

I, APSE , '. _. Security_ _. 'Level

Data Entry] I

+ Validation

GQM Model _., Report , I

Generat ÷ Analysis 'Generator I

I Evaluation

Level

Measurement

Level

[-_.-_._.--..--_-.-.--._--.'--.-_.;.--.--.'.--.-..--._-;

_-ms.,aP.t.-e.._J..i.*_w._._...m.._,.vm...4P_,qs. m'_.._...i, db_b..ap,_,*_.* 4

Opnfiguration Management & C ,ntrol

]_ " _a'_a

T_ ; ' Repository

Function__ al D8 Interfa._..._(e level

TAME DATA BASE

(Various Physical Data Bases)

i._ _ J

Fhture 2: TAME System A.rehitectur_

322 Joint Ada Confenmce 1_

3-19

Each of the four TAME levels consists of one or more

subsystems:

• The User Interface Level consists of the User Interface

Management Subsystem, a portion of the Security Mangement

Subsystem, the Data Entry and Validation Subsystem, the

GQM Mode[Selection Subsystem, the GQM Generation and

Analysis Subsystem, the Report Generating Subsystem, the

Measurement Scheduling Subsystem, and the APSE Interface

Subsystem.

• The Evaluation Level consists of the GQM Evaluation

,Subsystem.

• The Measurement Level consistsof a set of Measurement

Tools and a portion of the Security Subsystem.

• The Data Repository level consist_ of a portion of the

Security Subsystem, the Configuration Management and Con-

trol Subsystem, and the virtual Data Repository Subsystem.

The virtual Data Rep_utory Subsystem (----- TAME data base)

consists of one (or more) physical data base(s) and a functional

data base interface to the rest of the TAME system.

In the following we elaborate on the globaJ interactionof the

TAME subsystems. We discuss the interaction according to

levels of the TKME axchitecture.The orthogonal aspects of

security and configuration mangsment and control axe dis-

cussed independently.

The User InterfazeLevel.The User InterfaceManagement

Subsystem supports allinteractionsbetween users and TAME.

Interaction with an APSE is provided by the APSE Interface

Subsystem, manuMly collecteddata can be entered into the

TAME data base via the Data Entry and Validation Subsys-

tem. In addition, the user interfacelevel contains the GQM

Model Generation and Analysis Subsystem for setting up the

individual measurement and evaluation goals, questions, and

measures (GQM models), and the Report Generator Subsys-

tem. Finally, the Measurement Scheduling Subsystem allows

the implementation of strategies for computing measures

(periodically,whenever new versions are entered iut_ the data

base,etc.).

v The Evaluation Level implements

the appropriate context for a particularevaluation session,and

contains a processor,the GQM Evaluation Subsystem, for run-

ning evaluation sessions. This subsystem performs the evalua,

lion according to the particularneeds of the user documented

by some previously created GQM model. [n addition, the

GQM Evaluation Subsystem needs to know the specific
authorizations of the user in order to know which functions

can be performed by thisparticularuser. The GQM EvMua-

lion Subsystem also provides analysis functions which, i.e.,tell

the user whether certain measures can be computed based

upon the data currently availablein the data repository. This

analysis feature of the subsystem is used during the creation

phase of goals, questions,and measures, as well as during the

actual evaluatio_ phase according to previously established

goals, questions, and measures.

The Measurement Level, The Measurement Level consists

of tools for computing measures. The first measurement tools

under development axe for determining static source code

characteristics, data bindings, and structural test coverage m.

These tools are not just reimplementations of similar tools for

conventional languages. Due to the variety of new language

concepts of Ads, such as gsnerics, packages, tasks, and excep-

lion handling, terms like 'module' or 'data binding' have to be
redefined.

The Data Repository Level, The Data Repository Level

provides the infr_tructure for various types of evaluation.

This level allows sCoring and retrieving all kinds of software

related data, including GQM models, and authorization data.

This level should be as independent as possible of a particular

data bsam management system or a concrete data b.ase struc-

ture. [t should he implemented am an a_stract data type hid-

ink all these implementation details. This data base is designed

for all types of information accumulated in Ads projects, not

just the information created by measurement and evaluation

Cools. It also should be capable of interfacing to an existing

APSE. From this point of view, this data repository might

evolve into a prototype APSE data repository.

Ortho_onal T.4dV[E Subavstemq, Two very important, sub*

systems, the Security Subsystem and the the Configuration

Management and Control Subsystem as motivated in the

requirements section, are orthogonal to the four level structure
of TAME. They impact various levels of this structure and axe

therefore discussed independently.

The TAME Security Subsystem is distributed crc_ various

architectural levels of TAME. The Security Subsystem vali-

dates access to TAME at the user interface l_vet, based upon

the rights assigned to a particular user. These 'rights simply
control the ability of a user to invoke particular subsystems, or

to logon at all. In addition the Security Subsystem controls

access to allkinds of data by either accessingthe T.A_fE data

base or executing one of the measurement tools. The Security

mechanisms are implemented at the measurement and data

repository levels,the particularproject-dependent strategy has
to be formulated at the user interfacelevel.

TAME hansto cope with configuration problems exceeding

the conventional ones dealing with consistency of versions of

various types of project documents. The additional

configuration problem consists of linking the currency of the

resultsof running tools to the document (e.g.,source code,

design document) that they analyzed and to the relevant GQM

model the evaluation was driven by.

First Prototvoe

Currently a firstprototype is being implemented for a

Sun-3/UNIX environment. This first prototype will implement

all four architectural levels; it will enable a user to specify an

evaluation goal in quantitative terms (GQM model), to run an

evaluation session according to some GQM model including the

computation of the prescribed measures, and to report the

measurement results in the framework of the corresponding

GQM model. The firstprototype will provide only limited

support for generating GQM models, for interpretingmeasure-

ment results,and for actual measurement. GQM models have

to be developed using a syntax-oriented type of editor without

sophisticated support for reusing previously developed models.

Me_.,.urements computed according to some GQM model will

be reported to the user by the GO_ EvMuation Subsystem

without automated interpretation support; one possibility is to

report results of an evaluation session in form of the GQM

graph augmented with the corresponding measurement results

or memages indicating that the corresponding measures could

not be computed because either the appropriats measurement

tool does not exist or the necessary project information does

Joint Ada Conference 1967 323

3-20

I
I

I
I

I
I
I
I

I
I

I

I
I
I
I

I
I
I

I

I
I

I

I
I
I

I
I

I
I

I

not exist in the da_ base. Only n limited set of measurement

tools - mainly for computing structure oriented measures from
source code - will be impkmented. The prototype is expected

to be implemented by the end of 1987.

Future Impact of TAME

The TAME project is intended to impact measurement

sad evaluation techniques for Ads as well as the design of

future APSEs. We strongly believe that future APSEs need to

consist of an evaluation oriented subsystem tad a construction

oriented (traditional APSEs) subsystem. Both subsystems

depend on each other ia the sense that construction of
software needs to be monitored and, on the other hand, only

properly documented project aspects can be assessed,

evaluffir_.d, predicted, and improved in s quantitative way.

Although there is no consensus as to how evaluation should be
integrated into am APSE, our intuition leads u to believe th_

evaluation can not simply be added to an APSE as aa add/-

tionad subsystem, but that the incorporation of sound evalu_-

tion procedures requires an entirely new architecture of an
APSE.

The short-term and mid-term orientation towards me_-

u_-ement and evaluation and the long-term orientation towards
designing future APSEs is reflected in the following three pro-

ject steps:

• Develop n prototype supporting Ill kinds of measurement

and evaluation activities in the framework of the goal, ques-

lion, measure paradigm.

• Interface the TAME prototype with existing APSEs, allow-

ing for automated measurement of development character=tics

sad on-line feedback into ongoing development activities.

• Derive guidelines for the design of future APSES, especillly

allowing for comprehensive support of a variety of process

models including their tailoring to particular project needs.

TAME is a very ambitious project going far beyond

automating the computation of measures; it provides the con-

text for 'goal-oriented use of measures. The requirements for

TA_NdE and a first _rcbitectural design were discussed. Pa_dlel

to the efforts of implementing a first TAME prototype many

research topics are pursued such as designing an Ads project

data base, employing artificial intelligence techniques for utiliz-

ing reuse in the process of generating GQM models and inter-
preting measurement results goal-oriented, and developing

strategies for configuration management and control of triples

"evaluation source(s) - GQ, M model - evaluation result(n)'.

Over time the TAME project is expected to produce guidelines

for designing future APSEs. Such APSES of the future need

to support selecting the process model _ppropriate for a partk-

ular project, tailoring this model to the specific quality gosh

and environment characteristics of this pro_ect', quantifying

quality and productivity goals for traceability purposes,

designing appropriate data collection and validation pro-

cedures, and deriving interpretation mecliasisms which allow

on-line feedback into the ongoing project as well as poet-

mortem analysis. An Long as we do not include sound meLs-

urement and evaluation into software projects, we limit the

324 Joint Ada Conterence 1967

possibilities for learning from prev___z-_ su..,_esuffi _d ftilar_,

especially pos_mor_m analysia is t meann for karaing from

failures, and refining the process model sad trace procedures

for the next project based on these findinp.

We want to acknowledge the many contributions to the

TAME project sad, thereby, indirectly to this paper by M.

Daskalaatontkis, A. Delia, D. Doubleday, L. Mark, K. Reed, D.

Stoats, J. A. Tamer, S. Wast, L. We, and S. Xiao-Hong.

Rshffiffiar_

[1] J. Bailey, V. R. Basili, "A Mete-Model for Softwm_

Development Resource Expenditures," Proe. of the Fifth

International Conference on Software Engineering, Su

Diego, USA, March 1981, pp. I07-Ue.

[2] V. R. Basili, "Quantitlbtive Evaluation of Software
Engineering Methodology, _ Technical Report, TR-I$19,

Dept. of Computer Science, University of Maryland, Co[.

lege Park, July 198,5.

[3] V.R. Basili, E. E. Ka_z, N. M. Panlilio-Yap, C. Log_
Ramsay, S. Chang, "Charscteri_tiou of an Ada Software

Development," IEEE Computer Map=_e, September

1985, pp. 53-65.

14] V.R. Basili, K. Freburger, "Programming Mea_mremeut
and Estimation in the Software Eugiuecriag Laboratory,"

Journal of Systems and Software, VoL 2, ,No. 1, 1981, pp.

47-57.

[5] V.R. Basili, E. E. Katz, *Metricz of Interest in an Ads
Development," Proe. of the [EEE Computer Society

Workshop on Software Engineering Technology Tran_ec,

April 1983, pp. 22-29.

I6} V.R. Basili, E. E. Katz, "Examining the Modularity c(

Ada Program.z," Proc. of the Joint Ada Conference,

Arlington, Virginin_March 16-19, 1987.

17] V. R. Basili, C. Loggia-Ramsay, *ARROWSMITH-P: A
Prototype Expert System for Software Engineering

Management, Proc. of the IEEE Symposium on Expert

Systernz in Government, October 23-25, 1985, pp. 252-
264.

{8] V. R. Basili, R. Reiter, Jr., "A ContinUed Experiment
Quantitatively Comparing Software Development

Approaches," IEEE Trans*ctions on Software En_inser-

ing, Vol. SE-7, No. 5, May 1981, pp. 299-320.

19] V. R. Basili, H. D. Rombach, "Tailoring the Software

Proce_ to Project Gosh and Eaviroumtats, = TR-1728,

Department of Computer Science, University of Mary-

land, November 1986. {is accepted for thn Ninth lateraa_
tional Conference on Software Engiaeecias, Monterey,

USA, 30 March - 2 April, 1987]

[I0] V. R. Basili, R. W. Seiby, Jr., "l)_ut Collection and
Analysis in Software Research and Management,* Proe.
of the American Sta_istie_ Aseo¢ittion Lnd Biometrk

Society Joint Statistical Meetings, Philadelphia, PA,

August 13-10, 1984.

3-21

Ill] V. R. Basili, R. W. Selby, Jr., "Comparing the
Effectiveness of Software Testing Strategies,"Technical

Report TR-1501, Dept. of Computer Science, University

of Maryland, College Park, May 1985.

1121 V. R. Basili,A, J. Turfler, "IterativeEnhancement: A

Practical Technique for "Software Development," IEEE

Transactions on Software Engineering, Vol. SE-I, No. 4,

December 1975.

[131 V. R. Basili,D. M. Weiss, "A Methodology for Collecting

Valid Software Engineering Data," IEEE Transactions on

Software Engineering, Vol. SE-10, No.3, November 1984,

pp. 728-738

[14] C. Brophy, W. Agresti, and V. R. Buili, "Lemons

Learned in Use of Ads Oriented Design Methods," Proc.

of the Joint Ads Conference, Arlington, Virginia,March

16-19, 1987.

[151 C. W. Doerliinger,V. R. Basili,"Monitoring Software

Development Through Dynamic Variables," [EEE Tran-

sactions on Software Engineering, Vol. SE-II, No, 9, Sep-

tember 1985, pp. 978-985.

1161 J. Gaanon, E. E. Katz, and V. R. Basili,"Metrics for Ads

Packages: An InitialStudy," Communications of the

ACM, Vol. 29, No. 7,July 1986, pp. 616-623.

Dept. of Computer Science

University of Maryland

College Park, MD 20742

(301)4s4.200_

•_etor R. Buill is Professor and Chairman of the Com-

puter Science Department at the University of Maryland, Col-

lege Park, Maryland. He was involved in the design and

development of several software projects, including the S[MPL

family of programming languages. He is currently measuring

and evaluating software development in industrial settings and

has consulted with many agencies and organizations, including
IBM, GE, CSC, GTE, MCC, AT&T Bell Laboratories, NRL,

NSWC, and NASA.

He isone of the founders and principalsin the Software

Engineering Laboratory, a joint venture established ia 1976

between NASA/Goddard Space Flight Center, the University

of Maryland, and Computer Sciences Corporation. In this con-

text he has worked closelywith CSE in developing models and

metrics for the software development process and product.

Dr. Basili has authored over 80 published papers on the

methodology, the quantitative analysis,and the evaluation of

the software development process and product. In 1982 he

received the Outstanding Paper Award from the IEEE Tran-

sactions on Software Engineering for his paper on the evalua-

tion of methodologies.

He was Program Chairman for the 8tb International

Conference on Software Engineering, and the FirstACM SIG-

SOFT Software Engineering Symposium on Tools and Metho-

[17] E. E. Katz, H. D. Rombach, and V. R. Basili,"Structure

and Maintainability of Ads Programs: Can We Measure

the Differences?," Proc. of the Ninth Minnowbrook

Workshop on Software Performance Evaluation, Blue

Mountain Lake, New York, August 5-8, 1986.

[181 H. D. Rombach, V. R. Basili,and R. W. Seiby, Jr.,"The

Role of Code Reading in the Software Life Cycle," Proc.

of the Ninth Minnowbrook Workshop on Software Per-

formance Evaluation, Blue Mountain Lake, New York,

August.5-8, 1986.

I19} R. W. Selby, Jr., V. R. B_sili, and T.'Baker, "CLEAN-

ROOM Software Development: An Empirical Evalua.

tion,"Technical Report TR-1415, Dept. of Computer Sci-

ence, University of Maryland, College Park, February

1985 lisaccepted for publication in [EEE Transactions on

Software Engineering].

[20] L. Wu, V. R. Basili,and K. Reed, *A Structure Coverage

Tool for Ads Software Systems," Proc. of the Joint Ads

Conference, Arlington, Virginia,March 16-19, 1987.

121] M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, and V. R.

Basili,"Software Engineering Practices in the U.S. and

Japan," IEEE Computer Magagine, June 1984, pp. 57-68.

dology Evaluation. He serves on the editorialboards of the

Journal of Systems and Software and the IEEE Transactions

on Software Engineering. He isa member of the ACM and the

Executive Committee of the Technical Committee on Software

Engineering, and is a senior member of the IEEE Computer

Society.

Dr. Rombach's address:

Dept. of Computer Science

University of Maryland

College Park, _ 20742

(301)454-8974

H. Dieter Rombach received his B.S. degree in

Mathematics from the University of Karlsruhe, West Ger-

many, in 1975, his M.S. degree in Mathematics and Computer
Science from the University of Karlsruhe, West Germany, in

1978, and his Ph.D. degree in Computer Science from the

University of Kaiserslautern, West Germany, in 1984. From
1978 to 1979 he was a research staff member in the Institute

for Technical Data Processing, Nuclear Research Center,

Karlsruhe, West Germany, from 1979 to 1984 he was a faculty

member of the Department of Computer Science at the

University of Kaiserslautern, KaLssmlautern, West Germany.

He is currently _n A_istant Professor of Computer Sci-

ence at the University of Maryland, College Park. His research
interests include software methodologies, measurement of the

software process and its products, and distributed systems.

Dr. Rombach is a member of the [EEE Computer

Society, the Association for Computing Machinery, and the

German Computer Society (GI).

Joint Ada Conference 1987 325

3-22

I

I

I
l
l

I
I

I

I
I

I
I

I
I
I
I

I
I

I

I

I

I

I

I

l

I

I

I

I

I

I

I

I

l

I

I

i

l

Technlesd Report T][L-l't64
TAb/E-TR-1-lg87

June 1987

TAME"

INTEGRATING MEASUREMENT

INTO SOFTWARE ENVIRONMENTS

Victor R. BuUi and H. Dieter Rombaeh

Department of Computer Science

University of Maryland

College Psrk MD 20742
(301) 454-2002 or -8974

* Reaeareh for thb study was supported in part by NASA grut NSG-6123 ted ONR grant N00014-86-K.0633 to the
University of MmTiaad. Computer time was provided in part through the faci]ities of the Computer Science Center of
the University of Maryland.

3-23

TAME:

INTEGRATING MEASUREMENT INTO SW ENVIRONMENTS

Victor R. BasUi and H. Dieter Rombach

Department of Computer Science

University of Maryland

College Park MD 20742

(301) 454-2002 or -8974

ba:ac.t

Based upon a dozen years of analyzing software engineering processes and products, we pro-

pose a set of software engineering process and measurement principles. These principles lead to

the view that an Integrated Software Engineering Environment (ISEE) should support multiple

process models across the full software life cycle, the technical and management aspects of soft-

ware engineering, and the planning, construction, and feedback and learning activities. These

activities need to be tailored to the specific project under development and they must be tract-

able for management control. The tailorability and tractability attributes require the support of
a measurement process. The measurement process needs to be top-down, based upon operation-

ally defined goals.

The TAME project uses the goal/question/metric paradigm to support this type of meas-
urement paradigm. It.provides for the establishment of project specific goals and corporate goals

for planning, provides for the tr_cing of these goals throughout the software life cycle via feed-

back and post mortem analysis, and offers a mechanism for long range improvement of all

aspects of software development.

The TAME system automates as much of this process as possible, by supporting goal

development into measurement via models and templates, providing evaluation and analysis of
the development and maintenance processes, and creating and using databases of historical data

and knowledge bases that incorporate experience from prior projects.

* Research for this study w_ supported in part by NASA grant NSG-5123 a_ad ONR grant N00014-85-K--0633 to the University of

Maryland. Computer time was provided in part through the facilities of the Computer Science Center of the University of Mary-
|and.

3-24

I

I
I
l

I
I
i

I

I
I
I

I
I
I

I
I

I
I
I

!

I

!

!
!
!
I

l
!

!
I

i
!
i

I

!
i
!

TABLE OF CONTENTS:

1 Introduction ...

2 Software Process Principles ..

3 Software Measurement Principles ..

4 Software Engineering Process ...

5 Integrated Software Engineering Environments

6 The TAME System: A Software Measurement Environment

**It*Qt._QO.OQ.Qt..*.°..tQ_....._Ot°QO._OQ_°t4t_°_O°°'°QO° e°°QI4 °Q_O°°* _OOQ I°O°'OOOO a "°I*O_*°°°

6.1 Requirements ..

6.2 Architectural Design ..

6.3 First TAME Prototype

7 Summary and Conclusions ...

8 Acknowledgements ...

9 References ...

3-25

2

3

6

I0

13

18

18

22

24

25

27

28

!

1. Introduction

The software engineering process needs to be tailorable and tractable. The tailorabil-

ity of a process is the characteristic that allows it to be altered or adapted to suit a set of spe-

cial needs or purposes {55}. The software process requires tailorability because the overall process

model, methods and tools need to be altered or adapted for the specific project environment and

the overall organization. The tractability of a process is the characteristic that allows it to be

easily planned, taught, managed, executed, or controlled [55]. The software process requires

tractability because it needs to be planned, the various planned steps in the process need to be

communicated to the entireproject personnel, and the process needs to be managed, executed,

and controlled according to these plans.

The goal of a software engineering environment (SEE) should be to support a tailor-

able and tractable software engineering process by automating as much of it as possible.

Currently, SEEs are often designed based upon the experience of the building organization and
l_he state-of-the-art knowledge of what can be automated. The concentration is mostly on con-

structive tools, i.e. tools that help in the building of a software product, rather than analytic

tools, i.e. tools that help in the planning, understanding, learning and feedback process.

At the University of Maryland, we have been working on providing such planning, under-

standing, learning and feedback support for SEEs. The TAME (Tailoring A Measurement

Environment) project is based on the idea that the software engineering process needs to be
tailored and trucked for the project specific quality and productivity goals, the characteristics of

the project environment, and the overall organization. Therefore, management and engineering

need a mechanism to help them define their goals operationally, tailor them to the project needs,

and evaluate their success and failure in achieving these goals. The mechanism we use to achieve

this goal is measurement. The measurement process must be top-down, i.e. driven by opera-

tionally defined goals, permit a bottom-up interpretation within the appropriate context, and
provide feedback for improving the processes and the products from the perspective of the

specific project and the overall organization.

It seems appropriate to define some of the important terms used in this paper in a

intuitive form. The term engineering comprises both development and maintenance. A software

engineeringproject is embedded in some project environment (for example, personnel, type of

application) and within some organization (e.g. NASA, IBM). The software project is conducted
according to a software engineering process which is defined in terms of an overall process model

(e.g. waterfall model [28, 51], iterative enhancement model [24], spiral model I30}) and supple-

meriting techniques (methods, tools). We distinguish between constructive and analytic methods

and tools. Whereas constructive methods and tools are concerned with building products, ana-

lytic methods and tools are concerned with analyzing the constructive process and the resulting

products. The project personnel is categorized as either engineers (e.g., designers, coders, tes-
ters) or managers.

In the first part of this paper we list empirically derived principles about the software

engineering process in general (section 2) and the measurement process in particular (section 3),

and derive an abstract software engineering model based upon these principles (section 4). In the
second part of this paper we describe characteristics of SEEs to properly support this particular

software engineering model (section 5) and introduce the TAME system, an automated measure-

ment and evaluation environment, designed to support the suggested approach to measurement
in an SEE (section 6). Finally we describe the first TAME prototype, which is the first of a

series of prototypes being built using an iterative enhancement model (section 7).

3-26

I

I
I

I
I

l
I
I

I
I

I
I

I
I
I

|
I
I

I

I

l
I

I
I
I

I
I
I

I
i

I
i

I
i

I
I

l

2. Software Process Principles

Based upon our experience in monitoring and evaluating the software engineering processes

and products in a variety of organizations over the past dozen years [4, 42], we have learned

several lessons about the software engineering process that are phrased as principles for the

TAME project:

The first five principles deal with the tractability of software engineering processes

and products, i.e. how should we plan for quality software engineering, how should

we evaluate the actual quality of performed processes and created products, and

how can we learn from this evaluation process.

(P1) It is necessary to develop quality a priori. Quality cannot be tested into the
system or even inspected into the system. We must improve the construction pro-

tess and not rely on analysis techniques (e.g. quality assurance techniques) as a
substitute for construction techniques.

We need to spend more time developing better methods for constructing (e.g. specifying,

designing, coding) software Even though some of the formalisms developed are still not easy

to use on the construction of large systems, several notable successes have begun to emerge,

even when the formalisms are partially or informally applied [27, 36}.

Too often,methods that were meant for qualityanalysis,e.g.testinghsve become methods for

construction.This means that we debug code or design rather than use the testprocess as a

qualityassurance method. Process models likethe one underlying the Cleanroom approach [36]

are based upon the idea that testingcan be used only as a qualityassurance technique with a

great deal of improvement in the qualityof the system. We have run replicatedexperiments

with thisapproach and found that ittrulyadds to the qualityof the product 153[.

(P2) In order to develop quality a priori, we need to formalize the planning of the

software engineering process.

Our frequent inabilityto develop qualitya prioriisdue to a lack of planning the constructive

processes as well as analyticprocesses. Without such plans the trialand error approach can

hardly be avoided. Proper planning of software engineering processesrequiresknowledge con-

cerning the impact of techniques,given the characteristicsof a particularproject. We need to

provide betterformalism for planning as well as more knowledge concerning the effectiveness

of techniques. The goal/question/metric paradigm I3, 19, 20, 25 i is an attempt towards for-

realizing the planning of analytic processes.

(P3) Engineering methods are often heuristic and not formal. They require
interpretation and evaluation as to whether they are being performed appropri-

ately, if at all.

Our experience in trying to characterize methods, so that they can be evaluated as to whether

they are being applied correctly, demonstrates the lack of precision in the specification of the

methods [12, 43]. In a study of the state of the practice in industry, we found that very few
organizations are using the methods and tools appropriately [57]. This is largely due to the

heuristic nature of many of the methods, i.e. if one engineer "does it right" it is hard to

explain to another engineer exactly what he/she is doing. Other reasons for improper use of

methods and tool_ are the lack of training, or inappropriateness of the methods and tools for

the problem and experience of the engineer or programmer.

-3-

3-27

(P4) In order to improve software engineering in an organization, we need to for-

malize the evaluation and improvement of software engineering processes and pro-
ducts.

Based upon the poor performance in the use of methods and tools, there is a need to evaluate

not only the product but the processes used in software engineering. There needs to be a

mechanism for evaluating how well the process is being performed so that it can be improved.

An evaluation and improvement paradigm is presented in [3, 25]. In our study [57] we found
very few organizations running post mortem analyses that would allow them to learn how to
better construct software.

(P5) Software engineers and managers need feedback in real time and the organiza,-

tion needs post mortem analysis in order to improve the process and product.

We found that many project managers keep track of some data during development and
maintenance but because this information is often manual and the data is inconsistent and

incomplete, it tends to be useless for real feedback and post mortem analysis [57].

The rest of these principles deal with the tailorability of the software engineering

processes and products. The first three principles stress the fact that all software

engineering environments are different, that there is a need for tailoring the specific

process model, methods and tools to the particular project environment, and that

this tailoring process needs to be formalized. The next principle emphasizes that this

need for tailoring does not exclude extensive reuse of experience. The final principle

deals with the requirements imposed by these kinds of tailored projects in terms of

management flexibility and automated support.

(P6) All project environments and products are different in some way. These differ-
ences must be taken into account in the software engineering processes and in the

quality goals set for the products.

Almost every organization we looked at had a software engineering manual but the managers

of projects of that organization almost never used it. There explanation was that their project

did not match the "ideal" project description for which the guidebook was written [57 t .

(P7) There are many process models for software engineering. The process model

needs to be tailored to the organization and project needs and characteristics.

It was clear that each project needed to be able to tailor the process specified in the guide-

book, but here was no mechanism to help with this tailoring process. For example, for a pro-

ject in which the product is an application that the engineering group has built before, the
process and the various methods and tools may be quite different than for a project which

involves a new application for the organization [15].

(P8) We need to formalize the tailoring of processes towards the quality and produc-

tivity goals of the project and the characteristics of the project environment and
the organization.

Our only hope is to support the process by helping the engineers and managers establish goals

for projects, tailor the methods and tools for those goals, evaluate whether or not those goals

have been achieved, and learn from what they have done so the next project can be performed

better [19].

3-28

I
I

I
I

I
I
I

I
I
I

I

I
I
I

I
I
I

I
I

I

I

I

I

I

I

I

I

I

l

I

I

I

I

I

I

l

I

I

(Pg) This need for tailoring does not mean starting from scratch each time. We

need to reuse experience,, but only after tailoring it to the project.

Organizations like NASA have a great deal of experience in reusing processes, and experience

[2, 6, 8]. This is brought out significantly by the fact that in trying new methods the project's

productivity drops significantly [1, 32]. Unfortunately, most of the reuse experience lies in the
people, rather than in the institution.

(PIO) Because of this, management control is crucial and must be flexible. Manage-
ment must be supported in this protein.

It is difficult for m_nagers to keep track of all the f_ctors a_d experience in their heads. They

must make decisionsbased upon localprojectfactors. There must be an automated support

mechanism that helps inthe process.

-5-

3-29

I

I

3. Software Measurement Principles I

The need for tailorability and tractability as attributes of a software engineering process
designed to support these process principles is obvious. Tailorability is dependent upon our

understanding of the project goals, the characteristics of the project environment and the organi-

zation, and the effects of a set of candidate process models, methods and tools in similar project

environments for similar goals. For example, in order to tailor the design inspection process for a
particular project, we need to know the level of reliability required for the product, the distribu-

tion of errors likely to be made due to the experience of our developers, and the effects of dif-

ferent variations of the design inspection process on the critical error types. Tractability is

also dependent on our understanding of the project goals and the characteristics of the project

environment and the organization, but also on our ability to specify and perform those steps
that are important to the project goals. For example, in order to track the design inspection

process with respect to a desired level of reliability, we need to be able to specify, in an under-

standable way, each step in the design inspection process and its effect on the reliability of the
final product based upon such things as the experience of our developers and inspectors, and

evaluate its execution relative to that specification.

The ability to tailor and track the software engineering process requires a comprehensive

analytic approach to understanding. A top down measurement process, i.e. defining a

set of goals in an operational way that lead to metrics, supports such a comprehensive analytical

approach. For example, the proper evaluation of the effectiveness of the inspection process

requires measuring the expertise of inspectors on a relative scale, the number and types of

detected errors, and the relationship between faults found during inspection and reliability.

Again, based upon over a dozen years in measuring the software development process and

product in a variety of environments, we have recognized the following principles (including the

top-down orientation) for performing measurement:

The first four principles deal with the purpose of the measurement process, i.e. why
should we measure, what should we measure, for whom should we measure.

(M1) Measurement is an ideal mechanism for characterizing, evaluating, predicting,

and motivating the various aspects of software engineering processes and pro-
ducts.

We need to characterizein order to distinguishthe factorsthat differentiatethe software

processesand products, and provide an historicaldatabase for future comparisons. We can-

not evaluate without comparing and we cannot compare unlesswe are sure we are comparing

similarthings. Evaluation isespeciallyimportant for tailoring(e.g. which toolswork best in

what cases).Predictionand motivation are needed for planning.

(M2) Measurement must be taken on both the software processes and the various

software products.

There has been a fairamount of work on measuring the software product, even though most

of thiswork has focused on the finalproduct and the code in particular[29,38, 41 etc.I. Mon-

itoringthe processand alltypes of products isimportant ifwe are to assessthe qualityof the

products delivered. But there has not been enough work done on measuring the other pro-

ducts of the software development, e.g. the requirements document, the design documents

1471,or the testplans and the relationshipbetween these products. These products and their

relationshipcan be measured and the analysis can provide insightinto the environment and

I

I
I
I

I
I
I

I

I

-a-

3-30

I
I
I

I
I
i

I

I
I

I
I

l
I
I

I
I

I
l

I
I
I

I

I
I
I

I

the project for evaluation and improvement [46].

However, it is very important that we amess the software processes used in developing these

products. This is important for planning, constructing, and-learning if we believe there is a

relationship'between the quaJity of the process and the quaJity of the product. We need to

evaluate whether the process has been performed correctly in order to evaluate it. There is

evidence that this relationship exists and can be measured during development [5, 17, 53] as

well as during maintenance [48, 49]. There is also evidence that these techniques are not being

performed correctly in many environment [57].

(M3) There are a variety of uses for measurement. The purpose of the measurement

should be clearly stated. We can use measurement to examine cost, effectiveness,

reliability, correctness, maintainability, efficiency, user friendliness, etc.

We have used measurement for many of these purposes [7, 9, I0, II, 15, 16, 17, 19, 21, 23, 25,

50, 53]. However we have found that if the purposes for the measurement are not clearly arti-
culated, it is difficult to organize the appropriate data needed and interpret it appropriately

[57].

(]v[4) Measurement needs to be viewed from the appropriate perspective. The cor-

poration, the manager, the developer, the customer's organization and the user,

all view the product and the process from a different perspective and thus may
want to know different things about the project and to different levels of detail.

Most measurement in industry is collected from the point of view of the individual project

manager [57]. Thus, for example, the corporation can't make use of the data because there is

little commonality in the definitions and goals of different managers.

The rest of these principles deal with how the measurement process must be per-

formed. The first two discuss characteristics of metrics (i.e. what kinds of metrics,
how many are needed), while the rest deal with the characteristics of the measure-

ment process (i.e. what should the measurement process look like, how do we sup-

port planning, construction, and learning and feedback).

(]V[5) Subjective as well as objective metrics are required. We are not yet able to

objectively analyze all kinds of information but there is a great deal of knowledge
is needed and available that can be obtained by a careful characterization of sub-

jective knowledge.

For example as stated earlier, if we are to evaluate the effectiveness of various processes, such

as design inspections, then we need to know how well the developers understood the technique

and the application/problem, and how well they applied the technique before the effectiveness

of the technique can be assessed. This type of measurement can only be performed by subjec-

tive measurement at present. Subjective evaluation can be categorized on a quantitative scale

to a reasonable degree of accuracy [5, 19]. We have applied such subjective characterization

schemes in several environments with satisfactory results (e.g. the Software Engineering

Laboratory [4, 42], IBM, AT&T, Burroughs [49]).

(M6) Metrics in isolation are useless. For both definition and interpretation pur-

poses, a set of metrics need to be defined that frame the purpose for the measure-

ment process. We call this set a metric vector.

-7-

3-3].

We have been able to show that a set of metrics can be used to provide insightinto the

characteristicsof the product and the process [24]. Differentvectors may be associatedwith

the various levelsof the product hierarchy,e.g. the fullproduct, the various subsystems, the

modules, etc. In each case,metrics such as source linesof code, inter-data complexity, intra-

data complexity, etc can be associatedwith a particularpart of the system. For example, a

metric like linesof source code only provides a very small insightinto the sizeof a product.
We need other metrics likenumber of executablestatements and number of linesof comments

to help understand the concept of size.

(M7) The development and maintenance environments must be prepared for mea_

urement and evaluation. There is a planning phase necessary for this activity and

the activity must be carefully embedded in the process. This planning phase must
take into account the experimental design appropriate for the situation.

It is necessary to decide what we want to measure, how we are going to measure it and how

we are going to interpret the results. Part of the planning process deals with choosing the
appropriate set of metrics, not too many or too few, evaluating the cost of collection and

analysis,and determining how itwillbe used. Often data iscollectedbut not used because it

itwas not appropriatelyplanned for [57].Part of the problem isin laying out the experimen-

tal scheme appropriate for the kinds of assessment required. We have identifiedfour such

experimental layoutsfor varying degreesof cost vs. certitudein the experimental results[20].

(M8) We cannot just use other peoples models and metrics as defined. They must be

tailored for the environment in which they are applied and checked for validity in
that environment.

We have triedto apply a varietyofexistingmodels, forsuch thingsas resourceallocation[31,

44, 45, 54] in differentenvironments and found that they did not work as well as they did in

the environment for which they were developed, ifat all[2,6,8, 14]. This isbecause there are

some many factorsinvolved in software development and each environment isdifferent.We

have tried to apply various metrics [38,41, etcI in various environment and have found very

mixed results{9,23].

(Mg) In order to define a set of operational goals, specify the appropriate metrics,

permit valid contextual interpretation and evaluation, and provide feedback for

tailorability and tractability. The measurement process must be top-down rather

than bottom up. We use the-goal/question/metric paradigm for this purpose.

The problem isthat measurement must be associatedwith the specificenvironment and taken

for a specificset of purposes. The question of what to measure depends upon what itisyou

want to know. Therefore it isimportant that the metrics represent answers to specificques-

tions and goalsset for the software development processand product. One reason why metrics

are collectedbut not used [57]isbecause the measurement processwas not organized correctly

and the metricswere difficultto interpretbecause they were not definedbased upon a set of

operational goals.To aid in thisprocess,we developed the goal/question metric paradigm [25].

It supports the development of goals which can be refinedinto questionswhich motivate the

metrics,as wellas providing a context for interpretationand analysisof the metrics [3].

(M10) There is a subset of measures that provides the needed information for

definition and interpretation purposes. We call this a characteristic set of metrics
for the local environment.

3-32

I

I
I
I

I
I
I

I
I

I
I

I
I

I
I
I

I
I
I

I.

!
I
l
I
I
I

!
I
|
i
t
l
i
l
I
I
i
I

We have been able to show that a limited set of metrics can be used to provide insight into

the characteristics of the product and the process [22]. This characteristic metric set can

define the minimum necessary information for characterization, evaluation, prediction and
motivation.

(MI1) DatL can be collected via forms, interviews, find automatically via finalyzers

of the various products. Datffi collected via forms find interviews requires valida-
tion.

We have used all of the mechanisms for data collection in the gEL [4, 42J. We have found

that there is a need to validate the data collected via forms, such as error and change data,

[25]. The validation process requires a data analyst with an understanding of the data but

could be simplified by automated support.

(1VI12) In order to evaluate find compare projects and to develop models we need fin
historical database. This database should characterize the local environment.

This database can act as a basis for comparison for new projects. For example, we have been

able to show such things as common fault and error histories in certain environments [25] and
the differences represented by new developments [15].

(1VI13) 1VIetrics must be ambociated with interpretations, but these interpretations
must be given in context.

This database can be supplied with interpretations for various wlues of sets of metrics and

used to a_ess process and product chaxacteristics. The database provides a standard value

range for various metrics. When these values deviate from the norm there is a sign that there
is something different about this project. The interpretations associated with the project can

provide insights to management as to what is different, i.e. whether the project is in better or

worse shape than the normal project. This technique was used in the SEL to provide NASA

management with project assessment on an experimental basis and proved effective [34].

(IVI14) This database should evolve to formalize expert knowledge.

The database and metrics with associated interpretations can be combined into a knowledge

b_me that will help track project progress and a_ivise managers. A prototype expert system,

Arrowsmith-P was built to demonstrate the feasibility of an expert system for software

management built upon this concept [131. Experiments with this knowledge base system

proved to be as good as the expert managers in predicting problems with software project [46].
Although this system and the experiment were based on a limited set of metrics and performed

in a homogeneous software environment (i.e. similar systems built under similar cir-

cumstances), it is believed that since the knowledge base can track more data and more pro-
jects than any manager, a system can be built that does better than most managers.

9

3-33

!

J
4. Software Engineering Process I

r

The software process principles as well as the measurement principles (aiming at supporting

the process attributes tailorability and tractability) suggest that sound software engineering (at a _/

very abstract level) needs to be concerned with planning, construction, and learning & |
feedback.

Planning the software engineering process is aimed at providing a basis for developing quality

a priori (principle P1). It includes choosing the appropriate overall process model as well as the

specific methods and tools (principles P6 and P?). It involves tailoring each of them for the

project specific goals and the characteristics of the project environment and the organization.

The constructive and the analytic process models, methods and tools need to be planned. The

effectiveness of this planning process depends on the precision in the specification of engineer-

ing processes and methods (formal is better than heuristic: principle P3) and the experience
concerning their effect (only to be reused after tailoring: principle Pg). This kind of experience

can be gained via measurement and made accessible through historical databases (principle

M12) or even expert systems (principle M14). The entire planning process (principle P2), the
tailoring process (principle PS), as well as the measurement process need to be formalized.

The formalization of measurement needs to include deriving the appropriate metrics (principle

M10) for defined evaluation goals (principle Mg), experimental design (principle MT) and data

collection and validation (principle Mll).

The goal/question/metric paradigm was developed as a mechanism for formalizing this

kind of measurement [3, lg, 20, 25]. It represents a systematic approach for determining the

goal of measurement (tailored to the specific needs of an organization), defining that goal in a

tractable way into a set of quantitative questions that in turn define a specific set of metrics
and data for collection. Furthermore, the tractability of this process allows the interpretation

of the collected data and computed metrics in the appropriate context of questions and the ori-

ginal goal.

The process of defining goals and refining them into quantifiable questions is complex and
requires experience. In order to support this process, a set of templates for defining goals as

well as deriving questions was developed. These templates reflect our experience from having

applied the goal/question/metric paradigm in a variety of environments (NASA, IBM, AT&T,

Burroughs). Different templates exist for defining (1) measurement goals, (2) process related

questions and (3) product related questions. Goals are defined in terms of purpose, perspective
and environment. Process related questions are formulated for identifying the quality of use,

the domain of use, the cost of use, the effect of use and the feedback from use of a particular

process. Product related questions are formulated for defining a product in terms of physical

attributes, cost, changes and context, and evaluating it.

(1) Goal Definition Template (principles M1, M2, M3, and M4):

- Purpose:

To (characterize, evaluate, predict, motivate) the (process, product, model, metric) in

order to (understand, assess, manage, engineer, learn, improve) it. E.g. To evaluate the

system testing methodology in order to improve it.

I
I
I

- 10 -

3-34

!

- Perspective:

Examine the (cost, effectiveness, correctness, errors, changes, product metrics, reliability,

etc.) from the point of view of the (developer, manager, customer, corporate perspective,

etc) E.g. Examine the effectiveness from the developer's point of view.

- Environment:

The environment consists of the following: process factors, people factors, problem fac-

tors, methods, tools, constraints, etc. E.g. The product is ari operating system that must

fit on a PC, etc.

(2) Question Definition Templates:

- Process Questions:

For each process under study, there are several subgoals that need to be addressed. These

include the quality of use (a quantitative characterization of the process and an
ment of how well it is performed), the domain of use (a quantitative characterization of

the object to which the process is applied and an evaluation of the knowledge of the per-

formers of the process concerning this object), co6t of use (a quantitative characterization
of the cost of performing each of the subactivities of the process) effect of use (a quantita-

tive characterization of the output produced by the process and an evaluation of the qual-

ity of this output with respect to some quality or productivity aspect), and feedback from

use (a quantitative characterization of the major problems with the application of the pro-

cess so that it can be improved).

Other subgoals involve the interaction of this process with the other processes and the

schedule (from the viewpoint of validation of the process model).

Product Questions

For each product under study there are several subgoals that need to be addressed. These

include the definition of the product (a quantitative characterization of the product in

terms of physical attributes such as size or complexity, cost, changes and defects, and con-

text such as customer community or operational profile) and the evaluation and improve-

ment of the product with respect to a particular quality such as reliability or user satis-
faction. Because the evaluation and improvement of a product is relative to particular

quality aspects, its physical characteristics need to be analyzed relative to these quality

aspects.

These templates acknowledge the need for generally more than one metric (principle M6), for

objective and subjective metrics (principle MS), and for associating interpretations with
metrics (principle M13). The actual goal/question/metric models generated from these tem-

plates will be different from project to project and organization to organization. This reflects

their being tailored for the different needs in different projects and organizations. It also ack-

nowledges the need for different interpretation contexts in different environments (principle
Ms).

! - 11 -

!
!

3-35

• Construction of the required products follows the guidelines defined as part of the planning

activity in order to achieve quality a priori (principle P1); the existence of construction guide-

lines helps in assuring that methods are being used as intended (principle P3). It should be

noted tb_t the construction activity includes constructing the traditional project documents

(e.g. requirements, design, code) as well as all other kinds of analytic information prescribed
by the planning process (e.g., test results, scheduling data, effort data). The construction of

analytic information is supported by data collection, data validation, and the computation of

metrics as prescribed during the planning phase (principle Mll).

• Learning and feedback is based upon a paradigm for evaluation and improvement (princi-

ple P4). The learning requires monitoring (measuring) the engineering and management

processes as well as products (data), comparing the actual results (data) with the desired

results, interpreting the results according to the context (principle Mg) defined as part of the
planning activity, and feeding the lessons learned back into the ongoing project (which might

result in iterating the project plans) or into the planning phase of future projects. Feedback

(principle PS) is important to engineers and managers. An effective feedback mechanism is

especially crucial for supporting the complex management decision process (principle P10).

The effectiveness of the feedback mechanism depends heavily on whether the appropriate

interpretation context was provided for during the planning phase (principle M9) as well as
amount, quality and accessibility of a body of experience (principles M12 and M14).

The presented abstract engineering process model built upon the principles in section 2 and

3 can be viewed as an improvement paradigm for software engineering allowing for the develop-

ment of quality software as well as the evolutionary learning and accumulation of experience [3].

The need for integrating the building aspect and the measurement aspect is reflected in our soft-

ware engineering process model.

At the University of Maryland we have been working to incorporate these principles into

our work. We have developed an evaluation and improvement paradigm for the software

development process and product, continued to formalize the goal/ques¢ion metric paradigm to

aid in developing an operational set of project and corporate goals for software development and
provide a mechanism for evaluation and feedback, created an historical database for at least one

environment (the Software Engineering Laboratory), experimented with expert system technol-
ogy to help in the formalizing of expert knowledge, begun formalizing a mechanism for tailoring

the process under controlled conditions, developed classification schemes for experimental

analysis, developed meta-models that can be tailored for specific environments, and recently to

provide automated support for all these measurement and evaluation activities via the meas-
urement and evaluation system TAME (Tailoring A. Measurement Environment).

The TAME system development is part of the TAME project and is aiming at the integration of
all the measurement principles presented in the previous section into SEEs.

- 12 -

3-36

!
|

!
!
!

|
!
!
!
,I
I
!
!
t
I
I

!
I
!
I
!
!
i

!

!
U
!
!

5. Integrated Software Engineering Environments

S

The goal of an Integrated SEE (ISEE) should be to support the planning, construction,

and learning and feedback activities of a tailorable and tractable software engineering process.

This includes support for goal-oriented measurement as a means for achieving tailorability and

tractability.

SEEs cover a wide range of capabilities. We will characterize three classes of SEEs. At the

minimal level an SEE can be a met of tool- to support product development. A more sophisti-

cated SEE would consist of an integrated _-t of tools that support one or more specific pro-

ces8 models. The most sophisticated SEE would support all the activities required to tailor any

proeeum model, method, and tool to a specific oct of project needs. The varying levels of

sophistication require different degrees of support built into the SEE.

A high-level model of an ISEE is presented in figure 1. The original version of this model

was developed during a panel session of the Workshop on "Requirements for Software Engineer-

ing Environments', held at the University of Maryland in May 1986 [58]. The objective of an

ISEE is to support a software project producing engineering output objects (e.g. requirements

document, design document, source code) and consuming engineering input objects (e.g. an infor-
mal requirements statement, quality requirements). The software project is conducted according

to a particular software process model. The following components of an ISEE have been

identified ms crucial: (1) people, (2) methods and tools, and (3) a data repository (e.g. product
library, measurement library).

People need to plan for a software engineering project by choosing a process model, a

method or a set of methods for a particular set of input objects and a particular project goal set,

based upon information about which ones work best in this particular environment. This infor-

mation typically comes from the experience of the individual managers and engineers or some set
of software engineering standards or process model set up by the organization. However in a

more sophisticated environment it can come from a knowledge base of information, based upon

the organization's experience in developing software. This implies some form of data repoaio

tory of information ranging from a data base on the effectiveness of individual techniques, to a

knowledge base dealing with the interconnectivity, tailorability and performance of different

methods and tools in various organizational environments based upon specific project goals.
Some of this experience can be incorporated in the methods and tools themselves'. The con-

struction of the output objects is supported by the prescribed set of construction oriented

methoels and tools. Pieces from the product library might get reused for construction and

output objects might be entered into the product library for reuse in future projects. The

constructionprocess as well as the produced output objectsneed to be monitored by analytical

methods and tools. All the measurement data taken and metrics computed are stored in the

measurement database in order to increase the amount of information reflectingthe

organization'sexperience. Data are interpretedbased upon the information characterizingthe'

particularprojectenvironment and interpretationsof similarsituationsin similarprojects.The

amount of information representinghistoricalknowledge iscrucialfor an effectiveinterpretation

and feedback mechanism. Feedback can resultin learningby the projectpersonnel and in chang-

ing the process model, methods and tools.

! * We will use the term [SEE whenever appropriate; otherwise we use the term SEE.

!
!
!

- 13 -

3-37

Input
Objects

People Methods Tools

Product

Library

A

Measure-

ment

Library

Data Repository

i

/

./

/

/

/

Figure 1: Model of an ISEE

All the information produced and consumed in an ISEE can be categorized according to

three different schemes (see figure 2). According to the organizational scheme we might be

interested in the effect on one particular project or across multiple projects within the organi-

zation. According to the integrational scheme we can support assessment, evaluation and

improvement of individual methods or tools in isolation (local) or their integrated use in an

overall process model. According to the analytical scheme we can provide support for assess-

ment according to three categories, which we will refer to as measurement, feedback and plan-

ning. Measurement provides primitive data allowing for the quantitative characterization of

process and product aspects. Feedback implies a higher level form of information based upon

the interpretation of the measurement data in a context. Planning is based upon laying out the

project goals, defining them operationally and interpreting them in context. For each of the

categorization schemes the individual categories are listed in the order of increasing complexity:

The assessment of process and product aspects from the point of view of an organization is based

on their assessment in individual projects; the analysis of process and product aspects integrated

into the overall process model requires their prior local analysis; and planning requires knowledge

- 14-

3-38

•

I

.!
i'
!

!
II
i

!
!

I

!

I

I
'I

I
I
!
I
I
!
i

I
I

I
I

I
i
i
I
i
I
II

generated based upon feedback from prior projects via measurement.

 ,.E LES

FOR ONE ,. FO AN

INTEGRA TIONAL

Categorizltio.Scheme

LOCAL

Figus_e 2: Categorisation Schemes for Software Engineering Information

Four examples of possible combinations of the three information dimensions are given. At

the simplest level, we may want to characterize the effect of a particular method (local) in the

context of a given project using measurement. Specifically we may want to measure the number

of failures discovered during system test or the complexity of the source code. At another level

we may be interested in planning for the use of an integrated set of methods and tools to support

the goals of a given project. Here we are interested in laying out project goals, refining the

methods and tools based upon those project goals, measuring the effectiveness of the methods
and tools toward achieving those project goals, and providing high level assessment back to the

project manager on how well the particular instantiation of those methods and tools are working

and how they should be modified during project development. Another example might be to

understand the effectiveness of an individual method (local) across an organization based upon
feedback from multiple projects within the organization. This might be to assess the effect of a

system test tool used in different projects to evaluate it overall and possibly learn how to modify

and refine it for specific applications. At the most sophisticated level, we want to plan for the

tailoring of a process model and an integrated set of methods and tools for a class of projects

within the organization. This might be used to determine if there is a specific configuration of a

set of methods, tools and people for a class of projects, e.g. compiler development, common to

the organization. This would permit the organization to learn how to provide the appropriate

ISEE for any compiler development. The learning process takes place by specifying the charac-

teristics of the project class, defining the relevant set of goals, specifying and applying the candi-

date methods and tools, measuring the effectiveness of the methods and tools based on those

- 15 -

3-39

goals and interpreting within the context of the project goals, and providing feedback for the

refinement and improvement of the environment.

Ba._ed on the different levels of support for construction oriented activities (isolated,

integrated, tailorable) as well as the different ways for providing the needed information (meas-
urement, feedback, planning), we classify SEEs by the degree to which they provide constructive

and analytical support (see figure 3).

Constructive

SEE Components

SET OF

TAILORABLE

CONSTRUCTIVE

TOOLS

SET OF

INTEGRATED

CONSTRUCTIVE

TOOLS

SET OF

ISOLATED

CONSTRUCTIVE

TOOLS

NO PLANNING
ANALYTIC TOOLS TOOLS TOOLS

TOOLS

Figure 3: Classification of SEEs

Analytic

SEE Components

There is the environment type I consisting of a set of tools supporting construction. These

SEEs do not allow for controlling the construction process nor do they allow for learning and

feedback. The environment type II supports the construction by a set of integrated tools accord-

ing to one process model and allows for the quantitative characterization of various process and
product aspects via measurement tools. The environment type III supports feedback in addition

to the capabilities of II. Feedback allows the understanding of the problems with process and
product and their improvement as well as project specific learning. Only the environment type

IV allows for tailoring the process model and the set of methods and tools to the specific needs of

a project and the organization. This tailoring requires the planning of the specific project goals

and environment characteristics and their operational definition as well as knowing the effect of

candidate models, methods and tools in this situation. Learning of an organization is only possi-

ble if we can extract information from multiple projects. The needs of each project are unique;
therefore, planning and recognizing the commonalities as well as the differences between projects

- 16 -

3-4(}

I
I

!
I
!
!
I

I
l
I

i
I
|
i
I

i

I

is crucial to make an organization learn.

It is obvious that mo6t commercially available SEEs are of cla.._ I. Some research projects
include measurement and feedback mechanisms [35, 43, 52]; based on our information it is hard

to decide whether they fall into clam II or HI. We know of no research projects addressing the
planning issue.

With the TAME system development we attempt to contribute to the needed changes

towards ISEEs of type IV. We provide automated support for measurement, feeciback and plan-
ning.

- 17 -

3-41

6. The TAME System: A Software Measurement Environment

The TAME (Tailoring A Measurement Environment) system automates as much of the

measurement process as possible, by supporting goal development into measurement via models
and templates, providing evaluation and analysis of the development and maintenance processes,

and creating and using historical data and knowledge bases that incorporate experience from

prior projects. TAME will automate these measurement aspects within the framework of the

analytical dimension of the ISEE model presented in the previous section. In this section we

present the requirements for TAME, its architecture, and the scope of the first prototype. We

have planned a series of prototypes being built using the iterative enhancement model. This

approach is necessary because more research is needed in many areas (e.g., measurement,

artificial intelligence, databases and systems) before the idealized TAME system can be built

which will fulfill the entire set of requirements. As research results become available we will
enhance our prototypes.

6.1. Requirements

The requirements for the TAME system can be derived from sections 4 and 5 in a natural

way. These requirements can be divided into direct requirements (defined by and of obvious

interest to the TAME user) and indirect requirements (defined by the TAME design team and

required to support the direct requirements properly):

The first seven (direct) requirements include support for the planning activity by

automating the goal/question/metric paradigm, for the construction activity by
automating data collection, data validation and evaluation, and the learning and

feedback process by automating interpretation and organizational learning. In addi-

tion, the user requirements concerning the TAME interface and the ability to pro-
duce appropriate reports are addressed.

(R1) A mechanism for defining measurement and evaluation goals in an operational

and quantifiable way

We use the goal/question/metric paradigm and its templates for defining goals operationally

and refining them into quantifiable questions and metrics. The selection of the appropriate

goal/question/metric model and its tailoring need to be supported. The user will either select

an already existing model without any changes or generate a new one. A new model can be
generated from scratch or by reusing pieces of existing models. The degree to which the selec-

tion, generation and reuse tasks can be supported automatically depends largely on the degree

to which the goal/question/metric paradigm and its templates can be formalized. The user

needs to be supported in defining his/her specific goal according to the goal definition tem-
plate. Based on this goal definition, the TAME system will search for a model in the data

repository. If no appropriate model exists, the user will be guided in developing one. Based on

the tractability of goals into subgoals and questions the TAME system will identify reusable

pieces of existing models and compose as much of an initial model as possible. This initial

model will be completed with user interaction. For example, if a user wants to develop a model

for assessing a system test method used in a particular environment, the system might com-

pose an initial model by reusing pieces from a model assessing a code reading method in the

same environment, and from a model for assessing the same system test method in a different

environment. A complete goal/question/metric model includes rules for interpretation of

- 18 -

3-42

!

i
I
I
I

I

I
I
I
i
I
i
i
I

!

!

!

t

|

!

!

I

metrics and guidelinesfor collectingthe prescribeddata. As much of thisinformation as _si-

ble willbe generated by the TAME system automatically.

(R2) The automatic and manual collection of data and the validation of manually
collected data

The collection of all product related data (e.g. lines of code, complexity) and certain process

relateddata (e.g.number of compiler runs,number of testruns) willbe completely automated.

Automation requires an interfacewith constructionoriented SEEs. The collectionof many

process relateddata (e.g.effort,changes) _nd subjective data (e.g.experience of personnel,

characteristicsof methods used) cannot be automated. The schedule according to which meas-

urement toolsaxe run needs to be definedas part of the planning activity.Itispossibleto col-

lectdata whenever they are needed, periodically(e.g.always at a particulartime of the day),

or whenever changes of products occurred (e.g.whenever a new product versionisentered into

the product libraryMl the relatedmetrics are recomputed). All manually collecteddata need

to be validated. Validating whether data are within their defined range, whether all the

prescribeddata axe collected,and whether certainintegrityrulesamong data are not violated

will be automated. Some of the measurement toolswill be developed as part of the TAME

system development project,others willbe imported. The need for importing measurement

tools will require an effectiveinterconnectionmechanism (probably an interconnectionlan-

guage) for intesl'atingtools developed in differentlanguages. It can be expected that the

TAME system will be applied to software projectsusing differentimplementation languages.

Using TAME acrossdifferent language environments would requirethe replicatedimplemen-

tation of MI these language dependent product measurement tools.A language independent

product language needs to be definedinorder to avoid thisform of replication.Such a concept

would allow us to develop one translatorfor each language allowing for the translationof pro-

ducts written in thislanguage into the language independent representation,and one measure-

ment tool for each metric.For n metrics and m languages,we would need to implement nxm

measurement toolswithout the concept of an intermediatelanguage, but only n+m toolsusing

thisconcept.

(R3) A mechanism for controlling measurement and evaluation

In our case a goal/question/metricmodel specifiedthe execution of a particularmeasurement

and evaluation sessioncontrol-wise. Executing a goal/question/metricmodel includestrigger-

ing the execution of measurement toolsfor data collection,the computation of allmetrics and

distributionsprescribed,and the applicationof statisticalprocedures. Ifcertainmetrics or dis-

tributionscannot be computed due to the lackof data or measurement tools,the user needs to

be informed.

(R4) A mechanism for interpreting analysis results in a context and providing feed-
back for the improvement of the process model, methods and tools

We use a goal/question/metricmodel to definethe rulesand context for interpretationof data

and feedback for the purpose of refiningand improving process models, methods and tools.

The degree to which interpretationcan be supported depends on our understanding of the soft-

ware process and product and the degree to which we express this understanding as formal

rules. Today, interpretationrulesexistonly for some of the aspectsof interestand are only

validwithin a particularprojectenvironment or organization.However, interpretationguided

by goal/question/metric models willenable an evolutionarylearningprocessresultinginbetter

rulesfor interpretationin the future. The interpretationprocesscan be much more effective

- 19 -

3-43

provided historicaldata are availableallowing for the generation of historicalbaselines.In this

case we can at leastidentifywhether observations made during the current project deviate

from past experienceor not.

(RS) A mechanism for learning in an organization

The learning process is supported by applying measurement and evaluation to project classes
of interest. For each of those classes, a historical database needs to be established concerning

the effectiveness of the candidate process models, methods and tools. Feedback from ongoing

projects of the same class, the corresponding process models, methods and tools can be refined

and improved.

(RS) A. homogeneous user interface

We distinguish between the physical and logical user interface. The physical user interface

provides a menu or command driven interface between the user and the TAME system.
Graphics and window mechanisms will be incorporated whenever useful and possible. The log-
ical user interface is the user's view of measurement and evaluation. Users will not be allowed

to directly access data or run measurement tools. The only way of working with the TAME

system is via a goal/question/metric model. TAME will enforce this top-down approach to

measurement via its logical user interface. The acceptance of this kind of user interface will

depend on the effectiveness and ease to which this logical user interface can be Itsed (_ ease to
which goal/question/metric models can be generated). Homogeneity is important for both the

physical and logical user interface.

(R7) An effective mechanism for producing a variety of reports

The documentation of measurement, evaluation, and interpretation results in form of hard
copies needs to be supported. Reports need to be generated for different purposes. Project

managers will be interested in periodical reports reflecting the current status of their project.

High level managers will be interested in reports indicating quality and productivity trends of

the organization. The specific interest of each person needs to be defined by one or more

goal/question/metric models based on which reports can be generated automatically. A laser

printer and multi-color plotter would allow the appropriate documentation of tables, histo-
grams and other kinds of textual and graphical representations.

The remaining five (indirect) requirements deal with the data repository issue,

organizational issues such as mechanisms for security, access control and

configuration management control, and system requirements for interfacing TAME

with construction oriented SEEs and executing TAME on a distributed architecture.
All these issues will are important in order to support all the direct requirements.

Indirect TAME requirements are:

(R8) The effective storage and retrieval of all relevant information in a data reposi-
tory

All data and knowledge required to support tailorability and tractability needs to be stored in

a data repository. Such a data repository needs to be able to store goal/question/metric

models, engineering products (product library in the SEE model) and all kinds of measurement

data (measurement library in the SEE model). It needs to store data derived from the current

project as well as .historical data from prior projects. The effectiveness of such a data reposi-

tory will be improved for the purpose of learning and feedback if, in addition to measurement

data, interpretations from various evaluation sessions are stored and when interpretation rules

- 20 -

3-44

,

!

I
I

!

i
I

I
i
i
I
I

I
i
I
I

/i

I

I
i
I
1
i
I
I
l
l

l
!
I
l
l
i
l
I
Ii

u cvm ,,_=s, ai part of _u_,L a repository, t ne data repository should be implemented as

an abstract data type, accessible through a set of functions and hiding the actual implementa-

tion. This latter requirement is especially important due to the fact that current database
technology is not suited to properly support software engineering concepts [26 t. The implemen-

tation of the data repository as an abstract data type allows us to use currently available

database technology and substitute it later as more appropriate technology becomes available.

The ideal database would be self-adapting to the changing needs of a project environment or

an organization. This would require a specification language for software processes and pro-
ducts and the ability to generate database schemata from specifications written in such a lan-

guage [40].

(R9) Mechanisms allowing for the implementation of a variety of acceu control and
security strategies

TAME needs to control the a_cess of users to the TAME system itself, to various system func-

tions and the database. These are typical functions of a security control system. The actually

enforced security strategies depend on the project organization. It is part of planning a pro-

ject to decide who needs to have access to what function and what piece of information. [n

addition to these security functions, more sophisticated data access control functions need to
be performed. The data access system is expected to "recommend" to a user who is develop-

ing a goal/question/metric model the kinds of data that might be helpful in answering a par-

ticular question and support the process of choosing among similar data based on availability
or other criteria.

(RIO) MechLnisms allowing for the implementation of a v_riety of configuration

management and control strategies

In the context of the TAME system we need to manage and control three-dimensional
configurations. There is first the traditional product dimension making sure that the various

product and document versions are consistent. In addition, each product version needs to be

consistent with the related measurement data and the goal/question/metric model according

to which those measurements were taken. TAME needs to make sure that a user always knows

whether data in the repository are consistent with the current product version and were col-

lected and interpretated according to a particular model. The actual configuration manage-

ment and control strategies will result from the project planning phase.

(Rll) An interface to construction oriented SEEs

On one hand, itmight be necessary to collectdata (e.g.the number of activationsof a com-

piler,the number of test runs) from the actualdevelopment or maintenance processor have

access to the products. On the other hand, our mid-term goal asks for interfacingTAME

with SEEs for the purpose of on-line feedback into ongoing development or maintenance

activities.Models for appropriate interactionbetween constructive and analytic processes

need to be specified.Interfacingwith constructionoriented SEEs poses the problem of inter-

connecting systems implemented in differentlanguages and running on differentmachines

(with probably differentoperating systems), in an efficientway.

(R12) A structure suitable for distribution

TAME will ultimately run on a distributed system consisting of at least one main-frame com-

puter and a number of workstations. The main-frames are required to host the data reposi-

tories which can be assumed to be very large. The rest of TAME might be replicated on a

- 21 -

3-45

number of workstations.

6.2. Architectural Design

The TAME architecture in figure 4 describes the "individual components of the TAME sys-

tem and their interrelationships. According to the SEE model presented in section 5, the archi-

tectural components are tools and a data repository.

TAME

Interface Managemen_ USER

INTERFA CF.

LEVEL

i

i

/

i

/ t

i

," EVAL UA TIO_
i

..-" LEVEL

..z==--

MEASUREMENT

LEVEL

DATA

REPOSITOR Y

LEVEL

Figure 4: Architectural Design of the TAME System

- 22 -

3-46

|

,I

!

I
1
I
I
J

I
I

i
i

I
I

!
I
I

i
I

!

i
I

l

I
l
i

1
l,
11
m
!

I
!

I
I
l
I

l

We group the T,AJ,_.F_ components into four logical levels, the user interface, evaluation,
measurement and data repository level. Each of these four TA_ME levels consists of one or more

architectural components:

• The User Interface Level consists of the User Interface Management Tool, one of the

Access Control Tools, the Data Entry and Validation Tool, the GQM Model Selection-Tool, the

GQM Generation and Analysis Tool theReport Generating Tool, the Measurement Scheduling

Tool, and the SEE Interface Tool.

• The Evaluation "Level consists of the GQM Evaluation Tool.

• The Measurement Level consists of a set of Measurement Tools and one of the Access Con-
trol Tools.

• The Data Repository Level consists of one of the Access Control Tools, the Configuration

Management and Control Tool, and the Data Repository.

In the following we discuss the relationship between the TAME requirements and the archi-

tectural components as well as the interrelationship between these components.

T.h__Us__Iatcr.fag_.J._z_,L The User Interface Tool implements the physical user interface.

The SEE Interface Tool takes care of the interaction between TAME and construction oriented

SEEs. The inputing of non-automatically collected data and their validation is implemented by

the Data Entry and Validation Tool. The logical user interface is implemented by the GQM
Model Selection Tool; this tool guarantees that no access to the evaluation, measurement or data

repository level is possible without using a goal/question/metric model. In addition, the user
interface level contains the GQM Model Generation and Analysis Tool for generating

goal/question/metric models and the Report Generator Tool for producing all kinds of reports.

FinMly, the Measurement Scheduling Tool triggers data collection via measurement tools accord-
ing to planned schedules.

T_lle,. Ev_ltt_ioa_J_ze, L This subsystem performs the evaluation according to a particular

goal/question/metric model. In addition, the GQM Evaluation Tool needs to know the specific

authorizations of the user in order to know which evaluation functions can be performed by this

particular user. The GQ_VI Evaluation Tool also provides analysis functions, for example, telling

the user whether certain measures can be computed based upon the data currently available in

the data repository. This analysis feature.of the subsystem is used during the creation phase of
goals, questions, and measures, as well as during the actual evaluation phase according to previ-

ously established goals, questions, and metrics.

The._M.e_ar.emr.a__Lgx.e.L The Measurement Level consists of tools 5or computing metrics.

TheDat_.R_o_j.t_r_ Lez.e.L The Data Repository Level provides the infrastructure for vari-

ous types of evaluation. This level allows storing and retrieving all kinds of software related

data. In addition, the Configuration Management and Control Tool is viewed as part of or inter-

face to the data repository level. Data can only be entered into or retrieved from the data reposi-

tory under configurationand management control.

Orth_gnnaJ.,Ar,ce._._o._r.pJ._omIz(tae,_The Access Control Component isorthogonal to the

four levelstructure of TAME. [t consistsof a number of tools distributedacross the logical

architecturallevelsand are thereforediscussedseparately.

The TAME Access Control Component consistsof three tools. One tool validatesaccessto the

TAME system itselfand to various functionsat the user interfacelevelbased upon the rights

assigned to a particularuser.The two other data access controltools control accessto various

- 23 -

3-47

measurementtoolsandaccessto thedatabase.

6.3. First TAME Prototype

The first of a series of prototypes has been developed for supporting measurement in Ada

projects ['181. This first prototype implements all four logical levels of the architecture. However,

the automated support for some of the activities falls short of the requirements stated in section
6.1 because the state-of-the-art did not provide for their implementation. The choice of Ada

does not effect the TAME prototype except for the measurement tools which need to be run on
Ada source code.

The first prototype enables the user to generate goal/question/metric models using a struc-
tured editor. Existing models can be selected by using a unique model name. No support for

selecting models based on goal definitions or for reusing existing models for the purpose of gen-

erating new models is offered. Evaluation sessions can be run according to existing

goal/question/metric models. However, no support for interpretation is provided. Metric values

are presented to the user according to the underlying model for his/her interpretation. Results
can be documented on a line printer. The initial set of measurement tools consists of three tools

for computing product measures from Ada source code: a static source code analyzer computing

all basic source code counts including lines of code, frequency of use of particular language fea-

tures, cyclomatic complexity metrics and software science metrics, a data bindings analyzer, and

a structural coverage analyzer [56]. Similar tools for conventional languages such as Fortran are

exist too [33). A general schema for a software engineering data repository has been developed

and implemented [40]. The current implementation is based upon the relational database system
from ORACLE Corporation.

The first prototype is running on a SUN-3 under UNIX. It is implemented in Ada (as far as

the language dependent measurement tools are concerned} and C.

More research is needed before the idealized TAME system can be built. Major areas of

research include measurement, databases, artificial intelligence, and systems. Specific high-

priority topics are a formal language for specifying goal/question�metric models, the definition of

more and better models, mechanisms for better tailoring and reusing project knowledge, mechan-

isms for better interpreting metrics in the context of questions and goals, component intercon-

nection languages, a language independent representation of software, better mechanisms for

data access control and configuration management control, software engineering database
definitions, and distributed system architecture. As results become available we will integrate it

into an enhanced prototype.

- 24 -

3-48

!

!

I

!
!
ii
!
I

!
|

I

I
iI

!
!
!

i

!

7. Summary and Conclusions

Based upon a dozen years of analyzing software engineering processes and products, we

have proposed a set of software engineering process and measurement principles. These princi-

ples have led us to recognize the need for the software engineering process to support multiple

process models across the full software life cycle. Such an environment must support not only

the engineer but the manager. It must combine the technical and managerial aspects of software

engineering. The full software process life cycle consists of three stages: planning, construction,

and feedback _nd learning. The planning phase consists of the establishing of goals specific to

the project as well as the organization, and the selection of the process model, methods and tools

appropriate to those goals. The construction process consists of the the development or mainte-

nance of the product and the analysis of the process and product relative to the goals set. The
feedback and learning process consists of project tracking via a mechanism that provides infor-

mation for improving the current project as well as future projects.

Based upon this definition, the software engineering process need to be tailorable and tract-

able. We need the ability to tailor the process, methods and tools to specific project needs in a

way that permits maximum reuse of prior knowledge. We need to control the process and pro-

duct because of the flexibility required in performing such a focused development. We also need

as much automated support as possible. Thus an Integrated Software Engineering Environment
needs to address all of these issues.

We have argued that the tailorability and tractability attributes of the software planning,

construction and feedback and learning processes require the support of a measurement process.

The measurement process needs to be top-clown, based upon operationally defined goals.

The TAME project uses the goal/question/metric paradigm to support this type of meas-

urement paradigm. It provides for the establishment of project specific goals and corporate goals

for planning, provides for the tracing of these goals throughout the software life cycle via feed-

back and post mortem analysis, and offers a mechanism for long range improvement of all
aspects of software development.

The TAME system automates as much of this process as possible, by supporting goal

development into measurement via models and templates, providing evaluation and analysis of
the development and maintenance processes, and creating and using databases of historical data

and knowledge bases that incorporate experience from prior projects.

The short range (1-3 years) goal for the TAME system is to build the evaluation environ-

ment. The mid-range goal (3-5 years) is to integrate the system into one or more existing or
future development or maintenance environments. The long range goal (5-8 years) is to tailor

those environments for specific organizations and projects.

The TAME system is an ambitious project. It is assumed it will evolve over time and that
we will learn a great deal from formalizing the various aspects of the TAME project as well as

integrating the various paradigms. Research is needed in many areas before the idealized TAME

system can be built. Major areas of study include, measurement, data bases, artificial intelli-

gence, and systems. Specific activities needed to support TAME include: more formalization of

the goal/question/metric paradigm, the definition of better models for such attributes of quality
and productivity, mechanism for better formalizing the reuse and tailoring of project knowledge,

the interpretation of measures with respect to goals, interconnection languages, language

independent representation of software, access control in general and security in particular, soft-

ware engineering database definition, configuration management and control, and distributed sys-
tem architecture. We are interested in the role of further researching the ideas and principles of

- 25 -

3-49

the TAME project. We will build a series of evolving prototypes of the system in order to learn
and test out ideas.

It has been our plan to form a collaborative arrangement with several companies, govern-

ment agencies and other research institutions in order to seek support in the development of the
TAME system. The support has come in two ways: financial and effort. To be a collaborator in

the TAME project, companies support the development of some specific tool or subsystem. The
financial support is used to research and build the particular tool or subsystem. It entitles the

organization to input into the prototyping of that specific tool or subsystem as well as have

access to all aspects of the TAME system. The effort support by the organization is in the pro-
ductizing of the tool or subsystem. The product belongs to the organization, but is available to

the University of Maryland for further work on the TAME system.

- 28 -

3-50

!

!
!

8. Acknowledgements

We want to acknowledge the many contributions to the TAME project and, thereby

indirectly to tills paper, by Michael Daskalantonakis, Alexis Delis, Dennis Doubleday, Leo Maxk,
Karl Reed, P. Dave Stotts, A. Joe Turner, Shouli Wang, Linda Wu, and Shi Xiao-Hong.

- 27 -

3-51

e

{1]

References

W. Agresti, "SEL Ada Experiment: Status and Design Experience," Proceedings of the

Eleventh Annual Software Engineering Workshop, NASA Goddard Space Flight Center,

Greenbelt, MD, December 1986.

[2]- J. Bailey, V. R. Basili, "A Meta-Model for Software Development Resource Expenditures,"
Proc. of the Fifth International Conference on Software Engineering, San Diego, USA,

March 1981, pp. 107-116.

[3] V.R. Basili, "Quantitative Evaluation of Software Engineering Methodology," Proc. of the

First Pan Pacific Computer Conference, Melbourne, Australia, September 1985 [also avail-

able as Technical Report, TR-1519, Dept. of Computer Science, University of Maryland,

College Park, July 1985].

[4] V.R. Basili, "Can We Measure Software Technology: Lessons Learned from 8 Years of
Trying," Proceedings of the Tenth Annual Software Engineering Workshop, NASA God-

dard Space Flight Center, December 1985.

[5] V.R. Basili, "Evaluating Software Characteristics: Assessment of Software Measures in the

Software Engineering Laboratory," Proceedings of the Sixth Annual Software Engineering

Workshop, NASA Goddard Space Flight Center, "Greenbelt, MD, 1981.

[6] V. 1_. Basili, J. Beane, "Can the Parr Curve help with the Manpower Distribution and
Resource Estimation Problems," Journal of Systems and Software, vol. 2, no. 1, 1981, pp.
47 - 57.

[71 V.R. Basili, E. E. Katz, N. M. Panlilio--Yap, C. Loggia Ramsey, S. Chang, "Characteriza-

tion of an Ada Software Development," IEEE Computer Magazine, September 1985, pp.
53-65.

[8] V.R. Basili, K. Freburger, "Programming Measurement and Estimation in the Software
Engineering Laboratory," Journal of Systems and Software, vol. 2, no. 1, 1981, pp. 47-57.

[9] V.R. Basili, D. H. Hutchens, "An Empirical Study of a Syntactic Measure Family," IEEE

Transactions onSoftware Engineering, vol. SE-9, no. 11, November 1983, pp. 664-672.

[10] V. R. Basili, D. H. Hutchens, "System Structure Analysis: Clustering with Data Bindings,"

IEEE Transactions on Software Engineering, August 1985, pp. 749-757.

[11] V. R. Basili, E. E. Katz, "Measures of Interest in an Ada Development," Proc. of the IEEE

Computer Society Workshop on Software Engineering Technology Transfer, April 1983, pp.
22-29.

[121 V. R. Basili, E. E. Katz, "Examining the Modularity of Ada Programs," Proc. of the Joint

Ada Conference, Arlington, Virginia, March 16-19, 1987.

[13] V. R. Basili, C. Loggia-Ramsey, "ARROWSMITH-P: A Prototype Expert System for Soft-

ware Engineering Management, Proc. of the IEEE Symposium on Expert Systems in

Government, October 23-25, 1985, pp. 252-264.

[14] V. R. Basili, N. M. Panlilio--Yap, "Finding Relationships Between Effort and Other Vari-

ables in the SEL," IEEE COMPSAC, October 1985.

[15] V. R. Basili, B. Perricone, "Software Errors and Complexity: An Empirical Investigation,"

ACM Communications, vol. 27, no. 1, January 1984, pp. 45-52.

- 28 -

3-52

!
!
I

I
I

I
i
i
I
I
i
!
I
1
I
i
I

I16] V. R. Basili,J. Ramsey, "Structural Coverage of Functional Testing," Proceedings of the

Eighth InternationalConference on Software Engineering,London, UK, August 1985.

[17] V. R. Basili,R. Reiter,Jr.,"A Controlled Experiment Quantitatively Comparing Software

Development Approaches," IEEE Transactions on Software Engineering, vol. SE-7, no. 5,

May 1981, pp. 299-320.

[18] V. R. Basili,H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment,"

Proceedings of the Joint Ada Conference,Arlington,VA, March 16-19, 1987, pp. 318-325.

[19] V. R. Basili,H. D. Rombach, =Tailoring the Software Process to Project Goals and

Environments," Proceedings of the Ninth InternationalConference on Software Engineer-

ing,Monterey, California,March 30 - April2, 1987, pp. 345 - 357.

[20] V. R. Basili,R. W. Selby, Jr., "Data Collectionand Analysis in Software Research and

Management," Proc. of the American StatisticalAssociation and Biomeasure Society Joint

StatisticalMeetings, Philadelphia,PA, August 13-16, 1984.

[21] V. R. Ba.sili,R. W. Selby, Jr., "Comparing the Effectivenessof Software Testing Stra-

tegies,"Technical Report TR-1501, Dept. of Computer Science, University of Maryland,

College Park, May 1985.

[22] V. R. Basili,R. W. Selby, Jr.,"Calculation and Use of an Environment's Characteristic

Software Metric Set," Proceedings of the Eighth International Conference on Software"

Engineering,London, UK, August 1985.

[23] V. R. Basili,R. W. Selby,and T.-Y. Phillips,"Metric Analysis and Data Validation Across

Fortran Projects," IEEE Transactions on Software Engineering, vol. SE-9, no. 6,

November 1983, pp. 052-603.

[24] V. R. Basili,A. J. Turner, =IterativeEnhancement: A PracticalTechnique for Software

Development," IEEE Transactions on Software Engineering, vol. SE-I, no. 4, December
1975.

[25] V. R. Basili,D. M. Weiss, "A Methodology for Collecting Valid Software Engineering

Data," IEEE Transactions on Software Engineering,vol.SE-10, no.3,November 1984, pp.

728-738.

[26] P. A. Bernstein, "Database System Support for Software Engineering," Proceedings of the

Ninth InternationalConference on Software Engineering,Monterey, CA, March 30 - April

2, 1987, pp. 160-178.

[271 D. Bjorner, "On the Use of Formal methods inSoftware Development," Proceedings of the

Ninth InternationalConference on Software Engineering,Monterey, California,March 30 -

April 2, 1987, pp. 17-29.

[281B. w. Boehm, "Software Engineering," IEEE Transactions on Computers, vol. C-25, no.

12, December 1976, pp. 1226-1241.

[29] B. W. Boehm, "Software Engineering Economics," Prentice-Hall,Englewood Cliffs.N J,
1981.

[30] B. W. Boehm, "A SpiralMode[of Software Development and Enhancement," ACM Soft-

ware Engineering Notes, vol.11, no: 4, August 1986, pp. 22-42.

[31] B. W. Boehm, J.R. Brown, and M. Lipow, "Quantitative Evaluation of Software Quality,"

Proceedings of the Second InternationalConference on Software Engineering, 1976, pp.
592-605.

- 29 -

3-53

[32] C. Brophy, W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada Oriented Design
Methods," Proc. of the Joint Ada Conference, Arlington, Virginia, March 16-19, 1987.

[33] W. J. Decker, W. A. Taylor, "Fortran Static Source Code Analyzer Program (SAP),"

Technical Report SEL-82--002, NASA Goddard Space Flight Center, August 1982.

[34] C. W. Doerflinger, V. R. Basili, "Monitoring Software Development Through Dynamic
Variables," [EEE Transactions on Software Engineering, vol. SE-11, no. 9, September

1985, pp. 978-985.

[35] M. Dowson, "ISTAR - An Integrated Project Support Environment," Proceedings of the
Second ACM Software Engineering Symposium on Practical Development Support Environ-

ments, ACM Sigplan Notices, vol. 2, no. 1, January 1987.

[36] M. Dyer, "Cleanroom Software Development Method," IBM Federal Systems Division,

Bethesda, Maryland, October 14, 1982.

[37] J. Gannon, E. E. Katz, and V. R. Basili, "Measures for Ada Packages: An Initial Study,"

Communications of the ACM, vol. 29, no. 7, July 1986, pp. 616-623.

[38] M. H. Halstead, "Elements of Software Science," Elsevier North-Holland, New York, 1977.

[39] E. E. Katz, H. D. Rombach, and V. R. B_ili, "Structure and Maintainability of Ada Pro-

grams: Can We Measure the Differences?," Proc. of the Ninth Minnowbrook Workshop on

Software Performance Evaluation, Blue Mountain Lake, New York, August 5-8, 1986.

[40] L. Mark, H. D. Rombach, "A Meta Information Base for Software Engineering," submitted

to IEEE Transactions on Software Engineering.

{41] T. J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering,

December 1976, pp. 308-320.

[42] F. E. McGarry, "Recent SEL Studies," Proceedings of the Tenth Annual Software
Engineering Workshop, NASA Goddard Space Flight Center, December 1985.

[43] L. Osterweil, "Software Processes are Software Too," Proceedings of the Ninth Interna-

tional Conference on Software Engineering, Monterey, CA, March 30 - April 2, 1987, pp.
2-13.

[441 F. N. Parr, "An Alternative to the Rayleigh Curve Model for Software Development

Effort," [EEE Transactions on Software Engineering, vol. SE-6, no. 3, March 1980.

[451 L. Putnam, "A General Empirical Solution to the Macro Software Sizing and Estimating

Problem," IEEE Transactions on Software Engineering, vol. SE-4, no. 4, April 1978, pp.
345-361.

[46] C. Loggia-Ramsey, V. R. Basili, "An Evaluation of Expert Systems for Software Engineer-

ing Management," Technical Report TR-1708, Department of Computer Science, Univer-

sity of Maryland, College Park, MD, September 1986.

{47] H. D. Rombach, "Software Design Metrics for Maintenance," Proceedings of the Ninth
Annual Software Engineering Workshop, NASA Goddard Space Flight Center, Greenbelt,

MD, November 1984.

I48] H. D. Rombach, "A Controlled Experiment on the Impact of Software Structure on Main-

tainability," IEEE Transactions on Software Engineering, vol. SE-13, no. 3, March 1987,

pp. 344-354.

[49] H. D. Rombach, V. R. Basili, "A Quantitative Assessment of Software Maintenance: An

Industrial Case Study," Conference on Software Maintenance, Austin, texas, September

3-54

!

!
!

!
I

I
ii
1
|
tl
l
!

I
t
l
I
I

il
II

I
!
!

1
I
t

i

I
I
1
i

I
t
I
i
i
I
1

i987.

I501 H. D. Romb_ch, V. R. Basili, and R. W. Selby, Jr., "The Role of Code Reading in the Soft-
ware Life Cycle," Proc. of the Ninth Minnowbrook Workshop on Software Performance

Evaluation, Blue Mountain Lake, New York, August 5-8, 1986.

{51] W. W. Royce, "Managing the Development of Large Software Systems: Concepts and Tech-

niques," Proceedings of the WESCON, August 1970.

[52l R. W. Selby, Jr., "Incorporating Metrics into a Software Environment," Proceedings of the
Joint Ada Conference, Arlington, VA, March 16-19, 1987, pp. 326-333.

I53] R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software Development: An

Empirical Evaluation," Technical Report TR-1415, Dept. of Computer Science, University

of Maryland, College Park, February 1985 Iis accepted for publication in IEEE Transac-

tions on Software Engineering 1.

[54] C. E. Walston, C. P. Felix, A Method of Programming Measurement and Estimation,"
IBM Systems Journal, vol. 16,.no. 1, 1977, pp. 54--73.

[551 Webster's New Collegiate Dictionary, G -t- C Merriam Company, 1981.

[56} L. Wu, V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems,"

Proc. of the Joint Ada Conference, Arlington, Virginia, March 16-19, 1987.

[57} M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, and V. R. Basili, "Software Engineering
Practices in the U.S. and Japan," IEEE Computer Magazine, June 1984, pp. 57-66.

[58] M. V. Zelkowitz (ed.), Proceedings of the University of Maryland Workshop on 'Require-

ments for a Software Engineering Environment', Greenbelt, MD, May 1986, Technical
Report TR-1733, Dept. of Computer Science, University of Maryland, College Park,
December 1986.

- 31 -

3-55

UNCLASSIFIED

SECURITY CLASSiFiCATiON OF THIS PAGE

la. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

I

REPORT DOCUMENTATION PAGE

lb. RESTRICTIVE MARKINGS

3 . DISTRIBUTION I AVAILABILITY OF REPORT

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

TR-1764

6_11.NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL

(If applicable)

University of Maryland

6¢. ADDRESS (Oty, State, and ZIP Code)

Department of Computer Science

University of Maryland

College Park, MD 20742

8a. NAME OF FUNDING/SPONSORING 'Bb, OFFICE SYMBOL
ORGANIZATION (If applicable)

_A/GSFC

ADORESS (City, .S_te, a.nd.ZIP Codf) , , .
Office of Naval Research, Wash., D. C. " '

NASA/Goddard.Space Flight Center, Greenbelt,

Md.

11. TITLE (Include Security Clatd_fication)

TAME: INTEGRATING MEASUREMENT INTO SOFTWARE

12. PERSONAL AUTHOR(S) Victor R. Basili and H. Dieter

13a. TYPE OF REPORT

Technical

16. SUPPLEMENTARY NOTATION

UNCLASSIFIED/UNLIMITED

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

ONR
NASA/GSFC

7b ADDRESS (C/ty, State, and ZIP Code)

same as 8c

9, PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10 SOURCE OF,_FUNDING NUMBERS
PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

ENVIRONMENTS

i

Rombach

WORK UNIT
ACCESSION NO.

13b. TIME COVERED' '

FROM 10/86 TO 6/_7

14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
June 30, 1987 31

i i

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block nurnberJ'

FIELD GROUP SUB-GROUP software engineering, process models, methods, tools,

planning, constructing, learning and feedback, goal-oriented

measurement, integrated software engineering environments

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Based upon a dozenyearsofanalyzingsoftwareengineeringprocessesand products,we pro-

posea setofsoftwareengineeringprocessand measurement principles.These principlesleadto

the view thatan IntegratedSoftwareEngineeringEnvironment (ISEE)shouldsupportmultiple
processmodels acrossthefullsoftwarelifecycle,the technicaland management aspectsofsoft-

ware engineering,and the planning,construction,and feedbackand learningactivities.These

activitiesneed to betailoredto the specificprojectunderdevelopmentand theymust be tract-

ableformanagement control.The tailorabilityand tractabilityattributesrequirethesupportof

a measurement process.The measurementprocessneedsto be top--down,based upon operation-
Mly definedgoals.

(continued on back)

20. DISTRIBUTION/AVAiLABILiTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[_UNCLASSIFIED/UNLIMITED r-J SAME AS RPT. C_ DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Inclu¢l'e Area Code) 22c. OFFICE SYMBOL

H. Dieter Rombach 301-454-8974
I |

DO FORM 1473, 84 MAR 83 APR edition may be used unt,I exhausted. SECURITY CLASSIFICATION OF .'HIS PAGE
All other editions are obsolete.

UNCLASSIFIED

3-56

I
I
1
I
i
I

I
I

i
I

1
i

I
i

I

I
I

!
g

Ii
II
II
It
II
II

l
l
Ii
II

i

IL
11

The TAME project uses the goaJ/question/metric paradigm to support this type of mean-

urement paradigm. It provides for the establishment of project specific goals and corporate goaJs

for p|anning, provides for the tracing of these goals throughout the software life cycle via feed-
back and post mortem analysis, and offers a mechxnism for long range improvement of all

aspects of software development.

The TAME system automates as much of this process am possible, by supporting goal

development into measurement via models and templates, providing evaluation and analysis of
the development and maintenance processes, and creating and using databases of historical data

and knowledge bases that incorporate experience from prior projects.

3-57

Technical Report TR-1765 July lg87
NSG-5123

A META INFORMATION BASE

FOR SOFTWARE ENGINEERING

Leo Mark and H. Dieter Rombach

Department of Computer Science

University of Maryland

College Park MD 20742

(301) 454-8198 or °8974

* Researchforthisstudywas supportedin partby NASA grantNSG-5123 to theUniversityofMaryland. Computer
timewas providedinpartthroughthef_cilitiesoftheComputer ScienceCenteroftheUniversityofMaryland.

3-58.

I

I
I

1

I
i
I
I

I

I
I

I
I
I
I

I
i
I

TABLE OF CONTENTS:

1 Introduction ..

2 A Meta Software Engineering Model ..

2.1 The Specification Language ..

2.2 Meta Model Specification ...

2.3 Model Generation ...

3 The Role of Information Bases in Software Engineering En-
vironments ..

3.1 Requirements for a Software Engineering Information
Base ..

3.2 Related Research ..

4 A Meta Information Base for Software Engineering

4.1 The Specification Language ..

4.2 Meta Schema Specification ...

4.3 Information Base Generation ...

Current Status and Future Work ...

5.1 Software Engineering Research Issues

5.2 Database Research Issues ...

6 Conclusions ...

7 References ...

3-59

2

3

4

7

12

13

14

14

15

15

16

26

27

27

28

3O

31

•-A. Meta Information Base for Software Engineering

Leo Mark and H. Dieter Rombach

Department of Computer Science

University of Maryland

College Park, MD 20742

(301) 454-6198 or -8974

_b_trac.t

We propose a meta model and a graphical notation for specifying software engineering
processes and products. This meta model leads to the view that a software engineering informa-

tion base needs to support the storage and retrieval of process and product descriptions as well

as all data related to the executions of process descriptions and the actual instances of product
descriptions generated during the course of a software engineering project. A meta schema for

information bases is presented that allows us to deal with this type of information in a natural

way. In addition software engineering information bases need to be adaptable to changing pro-

cess and product descriptions based on changing project goals and characteristics of the project

environmerit and the organization. The meta schema of an information base allows for the gen-

eration of a customized information base for a given set of processes and products specified

according to the software engineering meta model. The idea for this research originated in the

TA_ME project at the University of Maryland aiming at the development of a measurement, feed-

back and planning environment. Currently we have implemented a first prototype information

base as part of the prototype TAME system customized to the specific needs of the NASA/SEL

environment. The schema of this first prototype was defined by hand and is implemented on a

relational database system. Developing the idealized information base for software engineering

requires more research in the areas of software engineering and databases. In the area of soft-
ware engineering we need to improve our uhderstanding of the software process and product in

order to be able to construct more formal specifications; in the area of databases we need to
develop a database technology for properly mirroring the specific software engineering concepts

including self-adaptability.

3-60

I
1
I
I

I

i
i

i
L

I

I
1
I

I

J
I
I

l

i

ii
II
II

-!

II
Ii
II
II

II
II
II
II
II
11
II

II
II

11

i. Introduction

Lessons learned from having monitored the software development and maintenance process

over a decade [Basili 85b], [McCarry 85] suggest a high-level software engineering model consist-

ing of planning, construction, and learning & feedback [Basili&Rombach 87c].

s Planning the software engineering process is aimed at defining plans for developing quality a

priori. It includes choosing the appropriate overall process model as well as the specific

methods and tools supporting this process model. It involves tailoring each of them for the
project specific goals and the characteristics of the project environment and the organization.

Process models, methods and tools need to be planned for construction as well as learning and

feedback. The effectiveness of this planning process depends on the precision in the

specification of the process models, methods and tools (formal is better than heuristic) and the
experience concerning their effects. The entire planning process as well as the tailoring process
need to be formalized.

• Construction of the required products follows the plans defined during planning; the

existence of construction guidelines helps in assuring _hat process models, methods and tools

are being used as intended. It should be noted that construction includes building the tradi-

tional project documents (e.g. requirements, design, code) as well as all other kinds of informa-

tion prescribed by the planning process (e.g., test results, schedule, effort data).

• Learning and feedback follows the plans defined during planning. The learning requires

monitoring construction (using process models, methods and tools)as well as products, com-

paring the actual resultswith the desiredresults,and feeding the lessonslearned back into the

ongoing project (which might result in iteratingthe project plans) or into the planning of

future projects. Feedback is important to engineers and managers. An effectivefeedback

mechanism isespeciallycrucial"forsupporting the complex management decisionprocess.

Software engineering processes designed according to this overall process model need to pos-

sess the attributes tailorable and tractable. Tailorability is required in order to plan the soft-

ware engineering process for the project specific goals and project environment characteristics.

Tractability is required in order to specify processes in an understandable way,. construct pro-

ducts according to these plans, and monitor the construction for the purpose of feedback and
learning.

The information needed for tailoring and tracking requires a comprehensive analytical

approach to software engineering. Goal-oriented measurement and evaluation is required

for this purpose [Basili 85a], IBasili&Rombach 87c]. The TAME (Tailoring A Measurement

Environment} project at the University of Maryland aims as the development of a measurement,

feedback and planning environment for software engineering [Basili&Rombach 87c]. It includes a
datab_ase for dealing with the large amount of information consumed and produced for the pur-

poses of measuring, providing feedback and planning. Work on this project has initiated our

work on meta information bases for software engineering which is currently beyond the scope of

the TAME project.

The inherent complexity of software engineering processes and the huge amount of data

involved in construction and analysis require automated support. Software engineering

environments (SEEs} attempt to automate as much of the software engineering process as possi-

ble. A major component of such SEEs will be an information base.

-2-

3-61

The purpose of an information base is to mirror the software engineering process in a

natural way. The changing nature of the software engineering process (tailorability) requires the
information base to be tailorable too. Otherwise it would not be capable of modeling different

process models in a natural way, nor would it provide a basis for easily comparing project data

from different projects. We believe that we can achieve this tailorability of the information base

with the concept of a meta information ba_e. The key idea of a meta information base is that

within a high-level schema framework, a specific databas.e schema reflecting a specific software

engineering process can be generated from a specification of the particular software engineering

process.

This paper is divided into three major parts: (1) the introduction of a meta model for

describing all kinds of software engineering processes and products, (2) the derivation of require-

ments for an information base supporting such processes and products in a natural and effective

way, and (3) the definition of a meta informatipn base that is capable of implementing those

software engineering requirements. Finally, we discuss the current state of the work and outline

future research topics. This paper intends to provide a framework for future research in the area
of information bases for software engineering. We believe that success in this complex area

depends heavily on the cooperation of people with software engineering as well as database

expertise.

2. A Meta Software Engineering Model

Existing approaches to specifying software engineering processes are not satisfactory. They

are frequently (1) incomplete, (2) inconsistent, and (3) imprecise. Incompleteness refers to the

fact that only parts of the processes and products, usually the well-understood ones, are

described. This is due to the fact that we do not understand many of the aspects of software

engineering (e.g. requirements analysis) well enough, cannot distinguish process aspects that

require creativity (e.g. designing) from those that can be easily automated (generating test cases

from formal specifications), and frequently do not understand the software engineering process us

a homogeneous process but a set of independent activities (e.g. development versus maintenance).

Inconsistency refers to the fact that different concepts, models and languages are used for

describing various aspects of software processes and products. This includes inconsistent termi-

nology (e.g. processes, methods, tools, techniques). These inconsistencies are in part again due to
the immaturity of the field. We have not been able to identify the unifying concepts of software

engineering allowing consistent descriptions. Mixing different dimensions (e.g. the technical and

managerial process dimensions) or aspects (e.g. quality, productivity) does not allow for clarity
and consequently consistent description. Impreciseness refers to the fact that the degree of for-

malism chosen to describe processes and products is not appropriate. This is due to the fact that

we do not yet understand many process and product aspects clearly enough to formulate them in

a precise way. We are not arguing here for formulating all steps of software engineering processes

in a formal, algorithmic way. This would clearly contradict the creativity required to engineer

software products. However, we are arguing for formulating as many aspects as formally as pos-
sible.

The consequences of the current state-of-the-art are a lack of eommunicatabUity

(ability to teach) of how processes should be executed, managed or controlled, a weak basis for

learning based on.a comparison of data collected according to different process models, and no

-3-

3-62

!

!

l
I

I
I
i

I

I
I

I
I
I
I

I

I
I

i
I

I

I

I

basis foe improvememt of the processes and products in an evolutionary way based on lessons

learned.

In this section we introduce a meta model for software engineering processes and products

which allows for their complete, consistent and precise speci6cation. First, we introduce a graphi-

cal notation (section 2.1) which will then be used for specifying our software engineering meta

model (section 2.2). We conclude this section with , brief discussion of how the meta model is

expected to be used for generating actual proeem and product specifications (section 2.3).

I 2.1. The Specification Language

I
1
I
I

I

A formal specificationlanguage that allows the software engineer or manager to clearly

specify allaspectsof a particulaxsoftware product or software engineering process isessentialfor

effectivelyteaching,executing, managing, and controllingsoftware projects.Many research pro-

jecra, e.g. Arca_lia iOsterweil 87], TA.ME iBasili&Rombach 87ai, [Basili&Rombach STb!,

[Ba.sili&Rombach 87c!, and GENESIS {Ramsmoorthy et al. 85!, are pursuing this goal in dif-

ferent ways. No consensus seems to be reached as to how an appropriate specificationlanguage

should look like in order to be both, capable of describing _he important process and product

aspects and _cceptable t_ the intended user. In the followingwe introduce a graphical notation

for describing types of processesand products.In the context of this paper, our graphical nota-

tion will be used for specifying our meta model; separate research efform continue trying to

incorporate the elements of thisgraphical language into a formal specificationlanguage.

The graphical notation iscomposed of the followingelements:

(1) Two kinds of' object types: processes (represented a_ boxes) and products

(represented as circles). Each proem and product is chaxacterized in terms of a
unique name _nd _n implementation.

i
I

I

I

I

I

I -4-

i
3-63

I

(2) Two kinds of relations between processes and products: the consume relation

(represented as a solid arrow connecting a product and process) and the produce

relation (represented as a solid arrow connecting a process and a product)

G

In the example, process P1 consumes products IPI and IP2 and produces products OPt, OP2.
and OP3.

(3) Four kinds of control flow relations between processes: the sequence, alternation,

iteration and parallelism relations (represented as solid arrows between processes;

parallel control flow is indicated through the augmentation of the corresponding

arrows with "] I")

-==-==d_

In the example, process P1 is in sequence with process'P2, processes P5 and P6 are alterna-

tively executed after P4, process P3 is iterutively executed, and processes P8 and P9 are exe-

cuted in parallel (independently).

Note: The graphical symbols for data and control flow are distinguished by their context.

Arrows representing data flow connect processes and products, whereas arrows representing

control flow connect just processes.

(4) Four kinds of structural relations between products: the sequence, alternation,

iteration and parallelism relations (represented in the same way as control flow
between processes).

-5-

3-64

l

l
i

I

I

I
I

i
I
I
I

I
I

I
I

!

I

i

II

l
II
II

II
ii

l

II
II
II
II

II

II

11
II
t

gation: the is part of relation (represented as dashed arrows augmented with the

relation name)

Q
/ql/ 11'

[n the example, process P1 isdecomposed into (and completely substituted by) processes PIt

to Pin. Produce P2 issimilarlydecomposed into products P21 to P°m.

(8) ,4,relation between processes or products a_lowing for specia3ization and generali-

zation: the ks_a relation (represented as dashed arrows augmented with the rela-

tion name)

G
"_ P' ql/ •

is_a , _ is_a @

In the example, each of the processesPII to Pln isa specializationof process PI, and each of

the products P21 to P2m isa specializationof produce P2. P1 ksa generalizationof each of

the Pll to Pin and P2 isa generalizationofP21 to P2m.

-6-

3-65

(T) A relation between processes or products indicating that they are somehow com-

parable: the is comparable relation (represented as two parallel solid lines)

In the example, process PI "_s_compar_ble" to process P2, and process P4 "is_comparable"
to the 'iteration of P7'. We circle the objects for which the relation is defined in the c_se that

not both objects are primitive processes or products.

(8) The implementation of a process or product is (a) text or (b) a refinement

according to (5) or (6)

Text refers to an object tha_ is not further specified. Text may include informal te×_ual

descriptions or formal textual descriptions (e.g. programs).

, text
i

imptemeac._u.ioa !
i

)
i

--A decomposition

(._ccordins_ (5) or (S))

We believe that a language built around these elements and principles will allow us specify

all aspects of a software process or product (completely), according to a set of unifying principles

(consistently),and to the levelof detailpossibledue to the nature of the problem and our under-

standing (precisely).The unifying model based on processes and products can even be used as a

reference model for mapping differentsoftware engineering terminologies; this would by no

means force people into using a common terminology, but would a|low them to clearlycommuni-

cate via the unifying referencemodel.

2.2. Meta Model Specification

In this section we introduce a software engineering meta model based on the graphical nota-

tion introduced in section 2.1. We will show that all aspects of software engineering can be

modeled using the primitive model based solely on the concepts of" processes and products:

(1) The concept process is used for all kinds of software engineering activities. It comprises the

-7-

3-66

|

i

!

I

I

I
I

I
I
I

I

I
I
I

I
I

I
I
I

I

I

I

I

l
I
l

l
I
I

I
i
l

l
l

l

l
l
I

elements of our high-level software engineering model (planning, corlstruction, learning and

feedback), overall software process models such as the "water fall" iRoyce 70], !Boehm 76'..

"iterative enhancement" [Basili&Turner 75] or "spiral" [Boehm 861 model, complex metho-

dologies such as the "Cleanroom" [Dyer 82] methodology, particular methods and tools such

as "top-down design" or "Jackson design", and even individual statements of an automated
tool.

Each process description consists of a unique name, a non-empty list of products consumed,

a non-empty list of products produced, and a process implementation. '

We use the concept process recursively in two ways. Each process can be decomposed

into lower-level processes or can be included into the aKgregation of higher-level processes.

This use of the term process can reduce the difference between an informal method and a con-

crete automated tool supporting this method to a difference in the degree of formalism in the
specification. Whereas the method might be described in informal English, the tool might be

the complete algorithmic formalization of the same process. The second possibility of using

processes recursively is specialization and generalization. In the case that one method can
be automated by a variety of tools alternatively, we can view the tools as specializations of the

method, or the method as a generalization of those specific tools.

(2) The concept product is used for all kinds of software engineering information. It comprises

the plans for construction and learning and feedback produced by the planning process of our

high-level software engineering model, deliverable products produced by the construction pro-

cess such as requirements, design, code, but also test data, schedule, resources, and all kinds of
measurement data.

Each product description consists of a unique name and a product implementation.

We use the concept product recursively in the same two ways aa processes..

Note: The concept of process and product isclearlydefined in the context of one particular

project.However, a product (e.g.a compiler)createdin one projectmight be used as a process

descriptionin the followingproject.This change reflectsthe processof learningby formalizing

process aspects such as compiling to a degree that itcan be completely automated and easily

reused in the future.

The transformation of products into processesisalsovery obvious in the case of our high-level

software engineering model. The products of the planning phase (descriptionsof processesfor

construction and learning and feedback) willbecome processesof the construction and learning

and feedback process.

(3) We encourage the awareness of technical versus managerial process and product aspects:

the extension of such awareness to all roles of software engineering (e.g. managers, designers,

quMity assurance personnel) might even be considered beneficial. The control flow and struc-

tural relations of the graphical notation allow for describing these kinds of separations as well
as their integration. The suggestion of separating aspects intends to contribute to a better

understmading of these aspects. Of course, they need to be integrated in the context of a soft-

ware engineering project.

The technical aspects are concerned with how a process (e.g. designing the system architec-

ture) is done by engineers, what products are required (e.g. a system specification, quality

requirements, experience), and what products are created (e.g. architectural design, integration

test cases, and experience).

-8-

3-67

Examples of technical processes are a design process, a test process, a product structure meas-

urement process, or a reliability measurement process. Examples of technical products are the

"design document, the test results, the product measurement, or the reliability measurements.

The managerial aspects are concerned with how a technical process is managed under the

restrictions imposed by the particular project environment (available resources).

Examples of managerial processes are the process of controlling schedule, assigning resources,

or controlling the quality and productivity requirements at various milestones. Examples of

managerial products are the project schedule, the resource plan, or the quality assurance plan.

According to this distinction we refer to software project personnel as either engineers or

managers.

(4) We encourage the awareness of constructive and analytic proce_ and product aspects.

Again, the control flow and structuralrelationsdefined for the graphical notation allow for

representing allkinds of decompositions and aggregations: The success of software projects

depends on a sound integrationof constructiveand analytic aspects as indicated by our high-

levelsoftware engineering model. This fact does not mean that we should not view them as

differentaspects.

The constructive aspects are concerned with generating products, while the analytic aspects

are concerned with secondary information derived from monitoring and analyzing constructive

processesand products.

Examples of constructive processes are a design process, a test process, controlling schedule,

or assigning resources. Examples of constructive products are a design document, test results,

project schedule, or resource plan. Examples of analytic processes are a structure measure-

ment process, a reliability measurement process, controlling schedule, or controlling quah'ty
and productivity requirements at various milestones. Examples of analytic products are pro-

duct structure measurements, reliability measurements, project schedule, quality assurance
results.

(5) The relationsconsume and produce are used to explicitlyexpress all kinds of information

needed for executing a process and resultingfrom its execution. Consumed information can

range from experience (forexample, in the form of historicaldata), to products produced dur-

ing-the same projectby other processes,products produced during prior projects,and charac-

teristicsof the projectand projectenvironment. Produced information can range from deliver-

able products (e.g.design or code documents) to measurement data or even new process and

product descriptionsbased on learning.

(6)The relationssequencer alternation, iteration and parallelism are used in the context of

decomposing and aggregating processesor products.

The semantics of these relationsin the context of a process decomposition isas follows:Each

decomposed process either(a) inheritsthe entireset of consume and produce relationsof the

aggregated process,(b) inheritsparts of the consume and produce relationsof the aggregated

process,(c) consumes products prodliced by a differentdecomposed process and produces pro-

ducts to be consumed by a differentdecomposed process,or allpossiblecombinations of (a),

(b),and (c).According to (2),each decomposed process requiresat leastone product for con-

sumption and production.The functionalityof the aggregated processisidenticalto the func-

tionalityachieved by alldecomposed processesifexecuted according to theircontrol flow rela-

tionships.

-- 9"--

3-68

I!

I
I
I

I
I
l

I
I
I

I
I

I
I

I
I
l

I
I

I

I

I

.

I

l
l
I

I
I

l
l

I

Both figuresshow a processP1 being decomposed into four processes PII, PI2. PI3, _nd PI4.

The firstfigure illustratesthe situation where each of the lower-level processes inheritsthe

entireconsume and produce relationsof PI (case(a));the second _gure illustratesthe situation

where the lower-levelprocessespartly inheritP1's consume (case (b))and partly produce _nd

consume new products Px and Py (case(c)).

The semantics of these relationsin the context of a product description_ as follows:sequence

means concatenation of two structuralcomponents, alternationmeans _he choice between :_vo

structuralcomponents, and iterationmeans the repetitionof a structuralcomponent. Itisno_

clear whether the parallel relation has any meaning in the context of product s_ruc_ure

descriptions.

(7)We need to allow for decomposition and a_regation of process and product descriptions.

The decomposition isnecessary to describe the refiningof some process or product into more

precise(lessabstract)processesor products.

Note: Decompositions are level complete. This means, if a process PI is decomposed in

processes P11, P12, P13, and P14 (see (6)),then these four processes together make up _he

entirefunctionalityof Pl (they entirelysubstituteP1)!

For example, the overall process "development = might be refined into "requirements

analysis',"=design", "coding_, etc.;similarly,we can refinethe product "deliver_bles" into

products "requirements documenz ", _design documenz", "source code documen is'*,etc.

Decomposition is also necessary in order to reflectthe hierarchy of product structure.For

example, =system _ might be recursivelydecomposed into "subsystems", "components" and
"modules =.

(8) We need to allow for specialization and genersdization of process and product descrip-

tions. Generalization of a set of process and product descriptions allows to group them

according to some common aspect.

For example, we can genersJizecompilers for allkinds of languages to a general compiler pro-

cess that translatesnatMgorithmic source code document into object code. Another example is

viewing _lltoolssupporting a specificmethod alternativelyas specializationsof that method.

!

I
- 10-

I
3-69"

!

(9) The capability of defining two processes (or sets of processes) or products (or sets of products;
comparable, allows us to provide a basis for learning and feedback based on historical infor-

mation (experience, knowledge). Assume that the current project is similar to a historical pro-

ject except for the overall construction process. Whereas the historical project was run based

on the traditional waterfall process model, the current project is based on the tterative

enhancement process model. Nevertheless, we are interested in comparing effort data collected

in bo(_h projects in order to evaluate the productivity aspects of using either one of the two
process models.

O-c

Defining the "comparable" relation with respect to effort data us follows might allow us to

compare both projects productivity-wise and to learn about the strengths and weaknesses of

both process models. In this example, we would like to compare all effort data related to each

process (e.g. design) and product (e.g. code) in the waterfall process model (top part) to the
data accumulated over the entire number of executions of the corresponding processes and pro-

ducts in the iterative enhancement model (bottom part).

(10) We need to distinguish between descriptions of a process and its execution as well as
between the description of a product and its instances. The graphical notation is only

concerned with descriptions.

Whereas descriptions of processes and products allow us to specify processes and products in a

complete, consistent and (as) precise way (us possible), we need the number of actual execu-

tions of process descriptions and the number of instances of each product description generated

during execution of these processes. An information base needs to store both the descriptions

as well as information related to each execution of a process and instance of a product.

The graphical notation introduced in section 2.1 seems to have the nice attribute, that

specifications can be easily transformed into an equivalent Petri Net. This would allow us to
capture the static aspect of a software engineering process as well the the execution aspect by

using one form of specification. A process description according to our graphical notation

allows us to describe the activities (processes) and pieces of information (products) and their

interrelation in a static form. Constraints on the execution behavior are modeled, implicitly

via products that are shared by processes (common data relationship) or explicitly via control

flow relations. However, such a static description does not tell us how often process descrip-

tions are executed and product descriptions are instantiated..We can simulate this dynamic

behavior easily by executing the dual Petri Net.

l

I
I

!
I

i

I

I

I
I

I
I
I

I
I
I

I

I
I

l

I

l

|

i

I

l

l
l

I

i
l
l

l
l

l

I

2.3. Model Generation

The validity and usefulness of our software engineering meta model depends on whether we

are able to (a) generate specifications for all kinds of processes and products using this meta

schema, (b) make project personnel use the rneta model during planning as well as the generated

specificmodels during construction and learning and feedback, and (c) generate an information

base supporting each process and product specifiedaccording to our software engineering mesa
schema.

The answer to part (a) seems to be yes,because allexistingprojectmodel[(e.g.iRoyce 871)

are described using subser_ of our _aphical notation.An automated tool,a processdecomposed

into a set of instructionsrelated by sequence, alternation,iteration and parallelism,can be

described according to our model.

The answer to part (b) requires more work. [t seems that our meta model will be useful

during planning for describingaspects of constructionand learning and feedback as well _ the

consumed and produced products completely, preciselyand as formal as possible.Itshould also

help construction and learninz and feedback in that itshould be easy to follow these kinds of

complete, consistent and preciseplans. The finalacceptance decision,however, will depend on

the degree to which we will be able to embed our software engineering meta model concepts into

a easilyusable formal programming language.

In this paper we willconcentrate on providing an answer"to part (c).We willstate require-

ments for an information base that would suDport processes and products specifiedaccording to

our software engineering meta model (section3) and develop a meta schema for information

bases allowing for the generation of an actual information base from such process and product

specifications(section4).

- 12 -

3-71

!

3. The Role of Information Bases in Software Engineering _
Environments

Software projects conducted according to our high-level software engineering model require

automated support by an Integrated Software Engineering Environment (ISEE). A model of such

an environment [Zelkowitz 86] using our terminology consists of people, descriptions of processes

and products (description database), the actual instances of constructive products (product data-
base), the actual instances of analytic products (measurement database), and the actual execu-

tions of process descriptions which drive a particular software engineering project.

People

4] SoftwareEngineering

A A A

I
v

Product

Base

Measure-

meat

Base

Descrip-

tions

Base

Data Repository

Figure 1: ISEE Model

The role of an information base is to support all the concepts included in our soft-

ware engineering meta model including storage of all the different kinds of informa-
tion indicated in the figure above.

- 13 -

3-72

m

I
I
l

!

i

l

I
l

I

I
l
i

I
I
I

l

l
I

I

i

l
l

I

I
l

I
l

I

i
I
I

l
i

l

l
I

i

3.1. Requirements for a Software Engineering Informatlon Base

The requirements for an information ba._e supporting software processes modeled

according to our meta model are to (a) allow the storage, update, and retrieeal of process and

product descriptions according to our meta model, (b) allow the storage, update and retrieval of

all the information related to executions of process descriptions and instances of product descrip-

tions, and (c) support all the concepts with respect to defining structures on process and product
descriptions as defined in section 2.2. Additional software engineering concepts that need to be

supported are the concepts of versions, configurations, tinge (when were process executions
started and ended, when were product instances created).

The fact that changing project goals and environment characteristics will result in different

plans for construction and learning and feedback for each new project, we need to be able to

adapt the supporting information base to these changing plans. The idea for achieving this goal

is to develop a meta information base. tha_ allows us to automatically derive the appropriate

information base schema for _ given software engineering process description. Therefore, an addi-

tional requirement for an meta information base is to incorporate a meta schema which is

on one hand compatible with the software engineering schema, and on the other hand allows for
easy (automatable) generation of r,he actual information base schema for any software engineer-

ing process or product description.

3.2. Related Research

There exist a number of related research projects iOsterweil 87!, r.Penedo&Stuckle 85_.

The Arcadia project [Osterweil 87! is working towards formalizing descriptions for individual

processes; the referenced paper contains an example of an algorithmic description of the process
of testing application software. Arcadia and our project have similar overall objectives; however,

we are emphasizing different aspects (recta language for describing software processes and pro-
ducts) and the information base aspects, whereas Arcadia emphasizes the formalization of indivi-

dual processes (methods. practices, techniques). In an effort at TRW a project master database
for software engineering environments has been developed Penedo&Stuckle 85;. However. the

PMDB model concentrates on the constructive products (documents, program manuals, etc.), the

analytic managerial products (resources) and the managerial processes. In addition, the model is

based on one particular life-cycle (overall process model) which restricts its ability to get
adapted to changing overall process models due to changing needs. This project emphasizes a

subset of the aspects which seem to be important according to our software engineering meta

model. At least the completeness criteria (allowing for the description of all process and product

aspects) seems not to be addressed by this project. Almost each software producing organization

needs to be concerned with the issue of having appropriate project support via information bases.
Most of the solutions are bottom-up in the sense that features are added to existing project

databases as needed. No other major project is known to the authors that really tries to sys-

tematically design an information base to support the actual needs in software engineering pro-
jects.

- 14 -

3-73

4. A 1VIeta Information Base for Software Engineering

The first step in the creation of a meta information base for software engineering is to

specify a database schema that completely and precisely mirrors the fundamental software

engineering concepts presented in the previous sections of this paper. The schema will pri-

marily serve as a formal basis for discussion of the fundamental software engineering concepts

and their relationships, and as a vehicle for evaluation of the whole concept in our information

base prototype.

To give a complete and precise specifica_;ion of the database schema we need a powerful

specification language. Most schema specification languages are based on the relational data

model [Codd 70], some with a thin layer of extra semantics added [Chen 76], [Nijssen 77],

[Smith 77], and [Codd 79 I. None of these languages are sufficiently powerful. Interesting and
promising research on semantic data models [Hammer 81], [Mylopoulos 80], [Shipman 81], and

on object oriented data models [Copeland 84], and [Derrett 86] provides more powerful

specification languages, but I our opinion the areas are still in a state of flux.

In this paper we shall use a database schema specification language that is based on the

relational data model with features added from the semantic data models and the object

oriented data models. We shall first briefly present the language and then proceed with the

specification of the schema. Constraints that cannot be specified in terms of our language will

be specified in natural language.

4.1. The Specification Language

The specification language consists of the named elements relations, attributes, and

domsins. Domain names and relation names are unique. There are two kinds of domains,

non-lexical and lexical domains. Non-lexical domains (full circles) model object-sets and lexical

domains (broken circles) model object-name-sets. We shall almost entirely be using non-lexical
domains in the specification. The reason is that we want to concentrate on modeling the funda-

mental software engineering concepts and their relationships, while postponing the aspects of

how the concepts are lexically described, represented, and referenced. In an implementation the

non-lexical domains will be represented by surrogates [Hall 76], which are system generated,
internal, unique identifiers for entities. .Attributes model the roles of the corresponding

domains in relations. Attribute names may be omitted, in which case the corresponding domain

name is used. However, attribute names must be unique within relations. A special kind of

relations (arrow from one domain to another) model is-a relationships between two domains.
An is-arelationisa totalfunction. Identifierconstraints (double headed arrow under an attri-

bute combination) model partialfunctions from an attributecombination to each of the restof

the attributesin the relation.

- 15-

3-74

I

I
I

i
I

I
I

I

I
I

I
I

I
I
i
I

I
I

I
L_ ' -

!

g

l
!

I

!
!

!
!

I

!
i
I

!
l

II
!
!

ams_A__v

Rather than using relational normalization, we aim at identifying atomic facto. Multiple

atomic facts may later be combined into larger relations while preserving at least Boyce Codd

normal form (BCNF). As is customary in object-role data models we shall model all concepts

in terms of domains. The role of the relations is therefore reduced to capture the aggregates

that form the concepm and to relate the concepts. An important advantage of our
specification language over the traditional relational data definition language is that it clearly

indicates that only attributes over the same domain can be used as a basis for entity loins

between relations. The relational model traditionally only supports domains of primitive types,

and does not support a strong typing concept. " .

4.2 1_ta Schema Design

The two fundamental concepm in software engineering are process and product. We shall

distinguish between process description and execution and product description and instance.

Description refers to the intension of a concept; execution and instance refers to the extension
of the concept. A description forms a concept in a way which allows us to decide whether or

not a given phenomenon is a member of the extension of the concept. We shall reserve the

wore[process e0eecutton to denote a member of a the extension of a process description, and we

shall reserve the word product instance to denote a member of the extension of s product

description.

To tie the process executions to their respective process description, we need the following
relation:

And, to tie the product instances to their respective product description, we need the fol-
lowing relation:

- 16-

3-75

!

We use the concept process recursivety in two wa_ First, a process description may be

an aggregate of a set of component process descriptions. In an aggregation we form a concept

from existing concept. The phenomena that are members of the new concept's extension are

composed of phenomena from the extensions of the existing concepts. Second, a process

description may be a generalization of a more specific process description. In a generalization

we form a new concept by emphasizing common aspects of existing concepts, leaving out spe-

cial aspects. The phenomena that are members of the existing concepts are all members of the

new concept, and they therefore inherit all the attributes of the members of the new concept.

Aggregation and generalization are classical themes in object oriented databases [Smith 77 I.

The a_ste process descrlpticmsare modeled below. A process descriptioncannot con-

tain itselfas a component at any level. Notice however, that a process description may be

reused in many aggregate processdescriptions.

;._pLrz__t u4ilprell'_ce

Within aggregate process descriptionsthe component process descriptionsmay be sequen-

tially ocdered, alternative, paraI]el, or iterate(]. Only process descriptions that are parts of an

aggregate process description can be used in any of these ordering schemes. Since process

descriptions may be reused in many aggregate process descriptions, the ordering must be aggre-

gate process description specific. Our approach is to model the restrictions imposed by the ord-

ering schemes. Since parallelism is not a restriction we need not model it. Sequence is for con-

venience assumed to be represented in a relation where the tuples are ordered on the aggregate

process description and subsequently on the component process descriptions. The order of the

component elements will of course depend on the lexical representation of their names, since it

makes no sense to order on the non-lexicalsurrogate values.Iterationwillsimply be modeled as

a "goto".

_ lll_rqs_p ,4escTip_q t

° 1T -

3-76

I

I
I
I

I
I
l

I
I

I
I

I
I
I

I
I

I
I
I

/
m

The generalized process de_riptions are modeled below. Notice that a process description

may be in more that one generalization. I.e. we model a generalization net rather than a gen-

eralization hierarchy. However, the generalization net cannot contain cycles.

I

I

1

I

I

I
I

To complete the two recursive definitions, we must model the fact that an aggregate pro-

cess description and a generalized process description are themselves process descriptions.

Traditional rules of inheritance of properties from generalized process descriptions to spe-

cialized process descriptions apply.

We use the concept product _ intwo ways. First,a product descriptionmay be

an aggregate of a set of component product descriptions.Second, a product descriptionmay be

a generalizationof more specializedproduct descriptions.

We model the gexeralized product descriptionsas follows. As for generalized process

descriptions,a product description may be reused in more that one generalization.I.e. we

o 18-

3-77

modela generalizationnetratherthana generalizationhierarchy.However,thegeneralization
netcannot contain cycles.

Traditional rulesfor property inheritance from generalized product descriptionsto special-
ized product descriptionsapply.

To complete the two recursivedefinitions,we must model the fact that an aggregate pro-

duct descriptionand a generalizedproduct descriptionare themselves product descriptions.

To summarize, we have modeled how process executions and product instances are tied to

process and product descriptions,respectively.We have also modeled how aggregate and gen-

eralized process and product descriptions can be defined from other process and product
descriptions.

|.ner_ized

procesl proce*e _l[Ifre_ce
process

de.crip_ _nerslizstion de.tripe I_'srecl¢ion_ descript

T -orde_a¢

cl_*; _cioa

proce_
¢xe_tcioa

- "i9-

3-78

I
l
I

I
I

I
l
l

I

I
I
I

I
I

l
I

i
I
I

I

I

I

I

I

I

I

I

I

l

I

I

I

l

I

I

I

I

l

le.Ji _ _ ll..J

It is however not su_cient to know that a given process execution is a member of an

aggregate process description,we specificallyneed to know the component process executions.

Likewise, itisnot su_cient to know that a given process execution isa member of a general-

.ized process description,we specific_Uyneed to know which specializedprocess execution we

axe talking about. The same arguments apply to aggregate product instances and generalized

product instances.

We shalltherefore in the following replicatethe relevant parts of the model of aggregation

and generalization,but this time the model appliesto the process execution leveland the pro-

duct instance level.

The aggregate process executions axe modeled as follows.Notice that, whereas a process

descriptionmay be reused in many aggregate process descriptions,we specificallymodel a pro-

cess execution as part of the execution ofone aggregate process execution at a time.

The ordering of the component process executions within an aggregate process execution

isdescribed by the aggregate process descriptiondiscussed above.

The generalized process executions are modeled as follows.Again, a process execution is

uniquely part ofone generalizedprocess execution.

To complete the two recursivedefinitions,we must model the fact that an aggregate pro-

cese execution and a generalizedprocess execution axe themselves process executions.

Traditional roles of inheritance of properties from general process executions to specialized

process executions apply.

A product instance may be an aggregate of a set of component product instances.

ste'pr°c_uc_tsnCe

A product instance may be a specializationof a more general product instance.

Traditional rules for property inheritance from generalized product instances to special-

ized product instances apply.

To complete the two recursivedefinitions,we must model the fact that an aggregate pro-

duct instance and a generalized product instance are themselves product instances.

To summarize, we have now completely modeled aggregation and generalizationfor both

processes and products at both the type leveland the instance level.

- 21-

3-80

I

I
I

I
I

I
I
I
I

I

I
I

I
I
I

I
I

I
i

i
I

i
I

I
I
I

I
I

l
I

l
I
I

I
I

l
l

l

I

Since the twelve domains in the illustration above are all non-lexical, they will be

represented by surrogates. Any information shout the objects modeled by these surrogates,

including their lexical representation, will be hooked up to the surrogates. Notice, that the

objects process execution, aggregate process execution, and generalized process execution are

special. They will be represented by surrogates, and there will be information about them

booked up to their surrogates, but will not have a lexical representation.

We have introduced a large number of constraints between the model of process and pro-

duct descriptions and the model of process executions and product instances. These constraints

are introduced not only because we explicitly model both a type and an instance level, but also

because we use a recursive definition of aggregates and generalizations for both processes and

products.

The most natural way of maintaining consistency between the surrogates in the aggrega-

tion and generalizationhierarchy above, isthrough the use of a well defined set of operations
for insertionand deletion.

MaintaJning consistency between the]exicalrepresentations of process descriptions,aggre-

gate and generalizedprocess descriptions,product descriptions,aggregate and generalized pro-

duct descriptions,product instances, and aggregate and generalized product instances is a

much more complicated problem. Fortunately_ thisproblem has a very elegant solution.

To control the consistency of lexicalrepresentationsof objects the meta information base

we only store the lexicalrepresentationsof the aton_c process and product descriptionsand the

atonic product instances.(An object isatomic/f itisnot defined as an aggregate or a generali-

zation.) Lexical representations of aggregate and generalized process and product descriptions

should merely refer to the other aggregate and generalized process and product descriptions,

and to the atonic process and product descriptionsdirectlyused in theirdescriptions.Likewise,

we should only store the lexicalrepresentationsatonic product instances,and merely refer to

3-81

these from the lexical representation of aggregate and generalized product instances. To avoid

storing multiple almost identical copies of atomic process and product descriptions, and atomic

product instances, we shall investigate incremental file representation techniques where a new
file which is an almost identical copy of an existing file is represented by a pointer to the exist-

ing file plus a file differential. Techniques of this nature are discussed in [Roussopoulos 87a].

The]exical representation of ncm atonic objects can be materialized through the use of
relational views.

Based on the above discussion,we can now model the storing of lexicalrepresentations of

aton_c process and product descriptions_and product instances.What these lexicalrepresenta-

tions look likewillof course depend on which language we choose for theirrepresentation.

Currently availabledatabase management systems do not directlysupport the storing of

large, variable size,unstructured objects. We will therefore have to develop a program that

stores these objects on filesunder operating system control and stores addresses of the files
under database control.

We model the representation of atomic objects as fdllows,where only the atomic process

and product descriptions,and the atomic product instances are relatedby the relations.

A version normally refersto an object that isalmost identicalto another object.In our

model, the concepts of process descriptionand execution, and product descriptionand instance

can be used to model the notion of version,and we shall not introduce versions as a separate
concept in our model.

A configuration normally refers to a collection of versions. Again, the concept of

configuration willnot be introduced as a separate concept because itcan be modeled by the
concepts already defined.

The concept of mapping isintroduced to allow data about product instances and process

executions collectedin a project using one software methodology to be compared to data col-

lected in a projectusing a differentsoftware methodology. Mappings also allow data collected

during a project using one software methodology to be interpreted under another software

3-82

I
l

I
l

l
I
I
I

l

I
I

I
I
I

I
I

I
l
i

I

I
methodology. We must provide data structures that support the software engineer in defining
mappings between process and product descriptions in different software methodologies. We
model a rudimentary mapping definition czLpability as follows.

Ix_e..de_p_.Ja_ prod.._eKril_.mlp _.._ee.m_ ?eod.jn_._map

I I I J _ I_ _ _ _I \-I :t _._
I _) :) =2)

Before a mapping can be defined, we may have to use the recursive process and product

definition capability in order to bring the concepts we want to compare to the same level of

abstraction. Once this is done we can use the mapping definition capability. E.g. to compare

measured design efforts using the Waterfall Model and Prototyping, we could from the Proto-

typing design process executions define an aggregate design process execution with an effort

measurement that is the sum of the individual effort measurements, and then define a mapping

between the aggregate design process execution and the design process execution for the
Waterfall Model.

I

I
I

I
I

I
D

The fundamental relationship between process executions and product instances is that a
proee_ executi, m uses a set of product instances as Input and produces a set of product

_es as output. This is illustrated below.

pe_,ee_..pe_l_-f...i / o

execution

?ro4_e_

La_alce
i/o

... -.

I

I

I

To describe and control the process, product, i/o relationships at the instance level, we
will need corresponding information about the process, product, i/o relationships at the type

level. This information is one of the essential part_ of the description of a software methodol-

ogy. We therefore define the following relation to hold information about the product descrip-

tions that are input and output for each process description in a software methodology. The i/o

domain consists of the values {i, o, io}.

-24-

3-83

I

n/o

..l.
• ..

I/o

,,.°.,..."

The above introduces an integrity constraint between the i/o information for process

descriptions and the i/o information for the process executions. In addition, the i/o information

given above imposes a constraint on the set and order of component process descriptions and

executions of an aggregate process description and execution. If one process execution pro-

duces output that is consumed as input by another one, then the order of, the two executions

must conform to this requirement.

Some software methodologies require for each process using a document detailed i/o infor-

mation for each element in a document rather than for the document as a whole. This require-

ment is supported by our model through the use of the recursive definition of process and pro-

duct descriptions.

The concept of n'_mn_nts has recently been the subject of considerable attention in

software engineering. Measurement can be perceived as a product instance or a process execu-

tion. A measurement can be part of,a product instance or a product instance in itsown right,

or measurement can be part of,a process execution or a process execution in itsown right.A

measurement can therefore be described by or as part of a product description,or it can be

described by or as part of a process description.We shallthereforenot introduce measurement

as a new concept.

Process executions and product instances have several time attributes associated with

them. Examples are the actual start and end times of process executions, the actual time of

creation of product instances.Examples of time attributesfor process and product descriptions

are time of creation,and lasttime executed and instantiated.Other time attributesare defined

on a relativetime scale,e.g.one process execution must preceed another one.

Time attributesare however examples of"measurements, and we shalltherefore not intro-

duce the time concept explicitlyat thisstage.

The notion ofuser views isvery important. User views are needed for managers, designer,

programmers, etc.In general, a user view isdefined as a consistentcollectionof product and

process descriptionstogether with a collectionof product instances and data about process

executions that conform to the descriptionsand are relevant to a particularproject.

- 25-

3-84

I

I
I

I
I

I
I

I

I
I

I
I

I
I
I

I
I
I

I

I

I

I
I

I
I
I

I
I

l
I
I

I
I

I
I

I
I

I

The purpose of this subsection has been to provide a formal schema definition that com-
pletely and correctly mirrors fundamental software engineering concepts independently of their

lexical representation.

The next step is to define the lexical object-name-sets that will allow us reference and

represent the concepts. It is very important to understand that the information base is com-

pletely blind wrt. the internal structure of the object-names; it cannot see, use, or maintain any

internal structure of object-names. E.g. an object-name-se_ may consist of a set of Ads pro-

grams, but they all took like text strings to the information base. This implies that the mainte-

nance of any structure of or constraints between object-names is the sole responsibility of the

users and software tools accessing the information base.

4.3. Information Base Generation

Assuming that we have expanded the schema definition with a set of appropriate object-

name-sets, the following set of software tools are required in order to generate and use the

information base for a particular project:

• a language for creating, aggregating, decomposing, generalizing, specializing, deleting, and
retrieving product descriptions,

• a language for creating, aggregating, decomposing, generalizing, specializing, deleting, and

retrieving processe descriptions,

• a language for creating, deleting, and retrieving i/o relationships between product and
process descriptions,

a language for creating, deleting, and retrieving mapping descriptions,

a language for manipulation product instance and process instance data under the control

of the process and product descriptions,

• a language for manipulating object-name-sets that are primitive data types of the informa-
tion base,

• languages for manipulating object-name-sets that are not primitive data types of the infor-"
m_tion base.

The above languages should be combined in two major languages, one for description pur-

poses and one for manipulating data about process instances and process executions

-26-

3-85

5. Current Status and Future Research

We have implemented a first prototype information base capable of handling a variety of

process and product related measurements. Those measurements were taken from projects in

the NASA/SEL environment [Sasili 85b], [McGarry 85] and include resource, effort, change

and product data. The schema of the information base was defined by hand according to the

meta schema presented i_ this paper. This prototype will be used as a vehicle for validating

and improving approach. It is planned to integrate this prototype into the prototype of the

measurement and evaluation system TAME [Basili&Rombach 87a], [Basili&Rombach 87bl,

[Basili&Rombach 87c]. In the context of the TAME system, the process of quantifying meas-
urement and evaluation goals into the appropriate set of metrics is formalized via the

goal/question/metric (g/q/m) paradigm [Basili 85a]. This paradigm assists the user in deriving

g/cb/m models consisting of a precise definition of the measurement and evaluation goal, a set

of questions defining this goal in quantifiable terms, and metrics. Our information base will

allow for storing these g/q/m models.

The information base for software engineering, as described in this paper, will allow the

automatic generation of the appropriate information base from a formal specification of a set of

processes and products. In order to develop this idealized information base more research in

the areas of software engineering and databases is required. Although we list the major

research issues separately for both areas, we strongly believe that success in this research area

will depend on the tight cooperation between the two areas.

5.1. Software Engineering Research Issues

Our understanding of the software engineering processes and products isstillinsufficient.

This lack of understanding limits our ability to formalize the representation of software

engineering concepts which in turn does not allow for providing appropriate support by an

information base. Our research goal isto develop a formal language for specifyingallaspects of

software processes and products in a complete, consistent and preciseway. We do not believe

that all aspects can be formalized in an algorithmic manner. However, we believe that even

those creative aspectscan be described as integrated into the overallsoftware development and

maintenance process; this integration would make them accessible to control to a certain

degree. We have not succeeded in developing such a specificationlanguage. We liketo believe

that we have, however, identifiedthe important concepts around which such a language can be

built. The goals ofour research are to develop the concepts and toolsthat are missing.

We have identifiedthe followingmajor future software engineering research issues:

A SpecificationLanguage for Processes and Products

A language forspecifyingallkinds of software engineering processes and products needs to

be developed. We believe that the meta software engineering model presented in section

2.2 can be the basis forsuch a language. Itisan open question today how the concepts of

thismeta model should be represented in terms of language features.

Support for Generating and Refining Specifications

The activityof generating process and product specificationsas well as refining them

based on experience needs to be supported. This includes support of the decomposition,

aggregation, specialization and generalization of processes and products. Completeness of

new specifications according to these operations and their consistency with the previous

specification should be checked automatically.

3-86

I
I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

i

l
I

I
I

I
I

I
I
I

I

I
l

I
I

I
I
I

I
i

Support for Tailoring Specifcations

Support for tailoring existing specifications to changing project goals and characteristics of

project environments and organizations needs to be supported.

Support for Reuse of Specifications
The effectiveness of generating new specifications as well as tailoring existing ones can be

improved if existing specifications can be reused.

The Integration of Constructive and Analytic Aspects

A specificationlanguage needs to address construction and analysis as integrated aspects

of software engineering.

The Separation of Different Views
A specification lanKuage needs to allow for the separation of di/_erent views. Depending on

their role in the context of a software engineering project (managers, designers, testers,

quality assurance personnel) people might be interested in a particular view of some pro-

cess or product.

The Identification of Similarities Between Processes and Products

We need to identifythe similaritiesamong processes and products. This might allow for

learning across projector even organizationalboundaries.

Our long-term -research goal is to contribute to the better understanding of software

engineering processes and products by allowing for theirprecise specification.We believethat

identificationof separate aspects as well as providing a framework for their integration isa

promising approach to identifyingthe unifying concepts of software ensineering. Only ifwe

reallyunderstand the concepts of area well appropriate support by an information base can be

expected.

5.2. Database Research Issues

There is currently no data model, let alone a database management system, capable of

supporting a meta information base for software engineering. One of the goals of our research

is to develop the concepts and tools that are missing.

There are, to our best knowledge, no major database research projects that focus on pro-

viding database support for software engineering. However, a good summary of database

research relevant to the software engineering community is provided in [Bernstein 87 I. There

are a number of database research activities that focus on providing support for engineering

activities in general [Bernstein 87], [Roussopoulos 87b]. Many of the results from this research
are applicable in software engineering too.

We have identifiedthe followingmajor database research issues:

Object Oriented Data Languages

A language for creating, aggregating, decomposing, generalizing,special/zing,deleting,

browsing, and retrieving objects from an information base supporting the distinction

between object-setsand object-name-setsmust be developed.

New Data Types

A variety of new data types are needed to store product and process descriptions,

specifications,designs, source code, object code, abstract syntax trees,test data, error

reports, etc.

3-87

Large Unstructured Objects

The data model must support the representation of large unstructured objects. These

objects should have a type, other than just the traditional"text",associated with them.

There are many ways to support the storingof large unstructures objects,one isto store

the objects under operating system control and just store the pointers in the database.

Whatever approach isadopted itmust be transparent to the user.

IntegrityConstraints

New aspects of integrityenforcement between source code, abstract syntax trees,docu-

mentation, etc. A change in the source code should enforce a change in the documenta-

tion too.

Deductive Rules

A large number of deductive rules are needed. Only a slightgeneralization of the rela-

tionalview concept isneeded in order to support the representation and enforcement of

.deductive rules [Sellis87}. One of the important applications of deductive rules is the

representationof g/q/m models.

Condition Actions Rules

A number of operations in a meta information system for software engineering willimply

further operations that must succeed for the initialoperation to succeed. As an example,

we may want to put an implementation on hold ifitsspecificationisbeing changed. Like-

wise, we need to specifyoperations in such a way that the integritybetween redundantly

stored information is controlled.To specify such operations, we need condition action

rules in the data model [Mark 85].Condition action rules are also ideal for the automatic

collectionof statisticalinformation needed by the g/q/m models.

Long Transactions

Software Engineering transactionsare very long compared to traditionaldatabase transac-

tions.Walk-through guidance-control systems willbe needed to help a software engineer

through a transactionto a consistentdatabase state once he has taken the firststep.The

specificationof long transactionscan be given in terms of condition action rules. In order

to control the development of products and the proliferationof products check-in and

check-out procedures may be applied. When a product is checked out by a software

developer, itcannot be changed by other developers. This concept corresponds to the

locking concept for short transactions. Integritychecking of long transactions,would hap-

pen when objectsare checked in.

Incremental Computation

While most of the information requested from the information base willbe about objects

at the highest levelsof the aggregation and generalizationhierarchy, only the objects at

the lowest levelof the hierarchy are physicallystored. This implies that incremental com-

putation of information requests based on the resultsof previous computations isessential

for performance [Roussopoulos 87aI.

DifferentialFiles

Several versions of almost identicalprocess and product descriptionsand products willbe

stored in the information base. Applying differentialfiletechniques is essentialto save

storage [Roussopoulos 87a}.

Query Languages with Tools

Query languages in current data models provide adequate support for inserting,deleting,

or modifying small structured data objects. However, for large "unstructured" objects,like

-29-

3-88

I

I

I
I
I

I
I
I

I
I

I

I
I
I

I
I

I
I
I

l

I
l

l
l
I
I

I
I

I
I

I
I

I
I

I
I

I
I

specifications, designs, object code, parse trees, etc. more sofisticated tools are needed for
creation and modification. The query language of a meta information base for software

engineering should support the use of syntax directed editors for specification and pro-
grarnming languages directly; e.g. if a source code object is modified the query language
should automatically force the user to do this through a syntax directed editor for the
language; other operations on source code include compilers and debuggers. The appropri-
ate tool could be invoked base on the type information we have recommended above.

Efficiency
With a powerful constraint specification language, deductive rule support, condition
action rules, and storing of large objects, efficiency is going to be a major problem.

6. Conclusions

Software engineering projects require the support of an information base as integrated
component of a software engineering environment. The need to continuously tailor software
engineering processes and products to changing project needs and characteristics of the project
environment and the organization requires equally the adaptation of the supporting informa-
tion base. The proposed meta model for software engineering as well as the proposed meta
schema for software engineering information bases attempt to formalize important software
engineering concepts and their mirroring in an ideal information base schema, respectively.
These two dual formal representations are the basis for automatically generating the appropri-
ate information base for a given set of software engineering processes and products. The ideal-
ized information base would adapt itself automatically to changing specifications of processes
and products.

This ultimate goal requires (1) a formal specification language for processes and products,
(2) a meta schema language for information bases that supports the automatic generation of
the appropriate information base from process and product specifications, and (3) the appropri-
at_ database r_chnology supporting all these concepts. We believe that with respect to (1) we
have a promising model in the form of our graphical notation and the meta model for software
engineering. More understanding of the real needs in the context of formalizing processes and
products is required to build a formal specification language around this model. We plan on
working towards this goal; our next step will be to test our current model by applying it to
specific processes and products in the NASA/SEL environment. Currently we are the furthest
along with respect to (2). Our meta schema of an information base is capable of mirroring all
the concepts defined as part of our software engineering meta model. This aspect was
emphasized in this paper. Our first prototype of a software engineering database shows the
applicability of the meta schema in at leas© one case. It is clear that today's database technol-
ogy (3) does not provide appropriate support for implementing all our requirements for a
software engineering information base in a natural way. Based on the deficiences of these three
areas we have defined a number of software engineering and database research issues.

-30-

3-89

7. References

[Bailey&Basili 81]
J. Bailey, V. R. Basili, "A Meta-Model for Software Development Resource Expenditures,"

Proc. of the Fifth International Conference on Software Engineering, San Diego, USA,

March 1981, pp. 107-116.

[Basili 85a]

V. R. Basili, "Quantitative Evaluation of Software Engineering Methodology," Proc. of the

First Pan Pacific Computer Conference, Melbourne, Australia, September 1985 [also avail-

able as Technical Report, TR-1519, Dept. of Computer Science, University of Maryland,

College Park, July 1985].

[Basili 85b]

V. R. Basili,"Can We Measure Software Technology: Lessons Learned from 8 Years of

Trying," Proceedings of the Tenth Annual Software Engineering Workshop, NASA God-

dard Space FlightCenter, December 1985.

[Basili&Rombach 87a]
V. R. Basili, H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment,"

Proceedings of the Joint Ada Conference, Arlington, VA, March 16-19, 1987, pp. 318-325.

IBasili&Rombach 87b]
V. R. Basili, H. D. Rombach, "Tailoring the Software Process to Project Goals and

Environments," Proceedings of the Ninth International Conference on Software Engineer-

ing, Monterey, California, March 30 - April 2, 1987, pp. 345 - 357.

[Basili&Rombach 87c]

V. R. Basili, H. D. Rombach, "TAME: Integrating Measurement into Software Engineer-
ing Environments," submitted to IEEE Transactions on Software Engineering. [Also avail-

able as TR-1764 Department of Computer Science, University of Maryland, July 1987].

[Basili&Turner 75]
V. R. Basili, A. J. Turner, "Iterative Enhancement: A Practical Technique for Software

Development," IEEE Transactions on Software Engineering, vol. SE-1, No. 4, December
1975.

[Bernstein 87]

P. A. Bernstein, "Database System Support for Software Engineering," Proceedings of the

Ninth International Conference on Software Engineering, Monterey, CA, March 30 -April

2, 1987, pp. 166-178.

[Boehm 76]

B. W. Boehm, "Software Engineering," IEEE Transactions on Computers, vol. C-25, no.
12, December 1976, pp. 1226-1241.

[Soehm 86]

B. W. Boehm, "A Spiral Model of Software Development and Enhancement," ACM
Software Engineering Notes, vol.II, no. 4,August 1986, pp. 22-42.

[Chen 76]

Chen, P.P.-S.,"The Entity Relationship Model - Towards a Unified View of Data," ACM

TODS 1, No. 1,March 1976.

o 81 -

3-90

I

I
I
I

I
I
I

I
I

I
I

I
I

I
I
I

I
I

I

i

I
i

I

l
i
l

I
I
I

I
i

i
I

I
I

I
I

I

[c_d _'o]
Codd, F_., "A Relational _del of Data for Large Shared I_ata Banks," CACM 13, No.

6, June 1970.

[codd 79}
Codd, E.F., "Extending the Database Relational Model to Capture More Meaning," ACM
TODS 4, No. 4, December 1979.

[COpeI_d 84]
Copeland, G. and Maier, D., q_taking Smalltalk a Database System," Proc. 1984 ACM

SIGMOD International Conference on Management of Data, pp. 316-325. ACM, June
1984.

[Derrett 86]

Defter, N., et al., "An Object-Oriented Approach to Data Management," In Proc. 1986

IEEE Spring Compcon. IEEE 1986.

[Dyer 82]

M. Dyer, "Cleanroom Software Development Method," IBM Federal Systems Division,

Bethesda, Maryland, October 14, 1982.

IHall 76]

Hall, P., Owlett, J., Todd, S.J.P., "Relations .and Entities," In G.M. Nijssen (ed.l, "Model-

ing in Data Base Management Systems," North-Holland 1976.

[Hammer 81]

Hammer, M., and McLeod, D., "Database Description with SDM: A Semantic Data

Model," ACM TODS 6, No. 3, September 1981.

[Mark 85]

Mark, L., "Self-Describing Databases - Formalization and Realization," TR-1484 Depart-

ment of Computer Science, University of Maryland, April 1985.

[McG_ry 8s]
F. E. McGarry, "Recent SEL Studies," Proceedings of the Tenth Annual Software

Engineering Workshop, NASA Goddard Space Flight Center, December 1985.

[Mylopoulos 80]

Mylopoulos, J., "An Overview of Knowledge Representation," In Brodie, M.L. and Zilles,

S.N. (eds.), Proc. "Workshop on Data Abstraction, Database and Conceptual Modeling.

ACM SIGMOD Record 11, No. 2, February 1981.

[Nijssen 77]

Nijssen, G.M., "Current Issues in Conceptual Schema Design," In "Architectures and

Models in Data Base Management Systems," North-Holland, 1977.

[Osterweil 87]

L. Osterweil, "Software Processes are Software Too," Proceedings of the Ninth Interna-
tional Conference on Software Engineering, Monterey, CA, March 30 - April 2, 1987, pp.
2-13.

[Penedo&Stuckle 85]
M. H. Penedo, E. D. Stuckle, "PMDB - A Project Master Database for Software Engineer-

ing Environments," Proceedsings of the Eights International Conference on Software

Engineering, London, UK, August 1985, pp. 150-157.

- 32 -

3-91

[_rthy et aL 85]

C. V. Raxmmoorthy, Y. Usuda, W. Tsal, and A. Prakash, "GENESIS: An Integrated

Environn2p.nt far Supporting Development and Evolution of SoR-w_e," Proceedings of
COMPSAC, 1985.

[Roussopoulos 87a]

Roussopoulos, N., "Incremental Computation Models," Department of Computer Science,

University ofMaryland, 1987. (In preparation)

[Roussopoulos 87b]

Roussopoulos, N., "Engineering Information Systems," In 1986 ACM-SIGMOD Interna-

tionM Conference on Management of Data, May 1986.

[Royce 70]

W. W. Royce, "Managing the Development of Large Software Systems: Concepts and
Techniques," Proceedings of the WESCON, August 1970.

[Royce 87]

W. W. Royce, "Managing th'e Development of Large Software Systems," Proceedings of

the Ninth International Conference on Software Engineering, Monterey, CA, March 30
-April 2, 1987, pp. 328-338.

[Sellis 87]

Sellis, T., Roussopoulos, N., Mark, L., Faloutsos, C., "High Performance Expert Database

Systems: Efficient Support for Engineering Environments," Department of Computer Sci-
ence, University of Maryland, May 1987.

[Shipman 81]

Shipman, D., "The Functional Data Model," ACM TODS 6, No. 1 (March 81).

[Smith 77]

Smith, J.M., and Smith, D.C.P., "Database Abstraction: Aggregation and Generalization,"
ACM TODS 2, No. 2 (June 77).

[Zelkowitz 86]

M. V. Zelkowitz (ed.), Proceedings of the University of Maryland Workshop on 'Require-
ments for a Software Engineering Environment', Greenbelt, MD, May 1986, Technical

Report TR-1733, Dept. of Computer Science, University of Maryland, College Park,
December 1986.

- 33 -

3-92

I
I

I
I

I
I
I

I
I

I
I

I

I
I

I
I

I
I
I

I

I
I

I
I

I
I
I

I
l
I

I

I
I
I

l
I

I
I

1

Technical Report TR-1848 May 1987
NSG-5123

CHARACTERIZING RESOURCE DATA:
A MODEL FOR LOGICAL

ASSOCIATION OF SOFTWARE DATA*

D.Ross Jcffery I & Victor R.Basili 2

1 Department of Information Systems

University of New South Wales
P.O.Box 1, Kensington NSW 2033

Australia
(02)697-4449

2 Department of Computer Science

University of MAryland
College Park MD 20742

U.S.A

(301)454-2002

*This research was funded in part by the National Aeronautical and
A.dministration Grant NSG-5123 to the University of Maryland.

o

3-93

Space

ABSTRACT

This papar presents a conceptual modal of softwarc davclopmant resourca dat_.. A
concoptual model, such as this, is a pre-requisite to the development of integrated
project support environments which aim to assist in the processes of resource
estimation, evaluation and control. The model proposed is a four dimensional view of
resources which can be used for resource estimation, utilization, and review. A process
model is presented showing tha use of the data model, and instances of the goal,
question, metric paradigm arc presented to show the applicability of the models to the
measurement task. The model is validated by reference to published literature, on
resource databases and the implications of the model in these database environments is
discussed.

KEYWORDS: software process, methods, tools, conceptual model,
process model, resources, estimation, environments
database,

3-94

I
I

I
I
I

l
I
I

I
I

I
I

I
I
I

I
I

I
I

I

I

i

|
I
I

i

i
I

!
I

i

i

l
I
I
I
I

I

_. INTRODUCTION

We know too littleabout the software process.Our understanding of the relationships

between inputs and outputs is fuzzy and at times erroneous. Evidence of the

difficulties encountered in managing the software process abounds in the number of
consulting organizations who aim to help management come to grips with the problems
of software estimation, evaluation, and control.

To date, the approach taken to the accumulation of knowledge concerning the
software process has been largely bottom-up. Studies have been carried out to
determine the existence and nature of project relationships. Studies such as [Wolverton
74], [Nelson 67], [Chrysler 78], [Sackman et.al. 68], [Basili, Panlilio-Yap 85], [Basili,
Freburger gl], [Basili, Selby, Phillips g3], [Walston, Felix ?7]), and [Jeffery, Lawrence
1979, 1985] have explored the relationships between project variables, searching for an
understanding of the software process and product. For example, relationships between
effort and size, errors and methods, and test strategy and bug identification, have
been found. In this type of research we are trying to fit the pieces into a puzzle
without a knowledge of the boundaries of that puzzle and with little direction as to
the entire picture being represented.

Exploratory research, such as this, is the norm in a newer discipline where theories to
direct the research are few and even the metrics of the discipline are undergoing
development.

This paper provides a top-down characterization (TDC) structure of software project
resource data, with the aim of facilitating:

1. Further accumulation of knowledge of project resource characteristics and
metrics within a theoretical structure.

2. The storage of project resource data in a generalized structured way so that
estimation, evaluation, and control can be facilitated using an organized
quantitative and qualitative data base.

This characterization structure is a prerequisite to the development of an Integrated
Project Support Environment (IPSE) in which it is possible to:

1. Objectively choose appropriate software processes

2. Estimate the process characteristics such as time, cost, and quality
3. Evaluate the extent to which the resource aims are being met during
development, and
4. Improve the software process and product.

The structure developed here is a part of the TAME (Tailoring A Measurement
Environment) project which seeks to develop an integrated software project

measurementwanalysis, and evaluation environment. This paper establishes a model of
the resource-estimation, utilization and review processes providing conceptual process
and data models which are validated against existing data models.

2. THE MEASUREMENT ENVIRONMENT

One paradigm which can be adopted to improve the software process and resulting

product is that of evolutionary development. This paradigm, which is commonly used

3-95

4

in software development itself, provides a low risk method by which one is eble to
make improvements to the object of interest based on the current characteristics of
that object, the existing knowledge concerning those characteristics, and the goals
appropriate to that object.

One project measurement environment which is based in part on this evolutionary
improvement, paradigm is TAME. This IPSE is discussed in [Basili, Rombach 87]. It is
also based on the "Goal-Question-Metric" paradigm outlined in [Basili 85].

The thrust of the Basili argument is that to have a successful measurement
environment it is necessary to connect that measurement with the goals which are
being pursued in the development and which give rise to the purpose of data
collection. There is little point in collecting data if there is no goal to be satisfied
through that collection. Perhaps more importantly, without a goal it is not possible to
establish the appropriate measures.

[Basili, Weiss 84] provide a sequence which can be used to establish the link between
the goals and the metrics collected.

l.Generate a set of goals based upon the needs of the organization.
2. Derive a set of questions of interest or hypotheses which quantify the
abstractions of the goals.
3. Develop a set of metrics and data distributions that provide the information
to answer the questions.
4. Define a mechanism for collecting the data as accurately as possible.
5. Validate the data as it is collected.

6. Analyze the data to answer the questions.

To illustrate, we could measure project size using the metrics of lines of code or
function points. Both are common metrics of size, but they can serve different
purposes. If we knew that:

1. we could estimate function points sooner in the lifecycle than lines of code, and

2. the correlation between effort and function points was consistently higher than
between effort and lines of code (see [Jeffery, Loo 87] for some evidence of this), and

3. our goal was to forecast the project effort based on estimated size,

then the function point metric would be better suited to our goal provided that we
could estimate the function points as accurately as we could estimate the lines of code.

In another example, the goal might be:

To reduce project effort by 3% over that forecast by the organizational
estimation technique.

In order to achieve this goal actions must be taken in the development environment
with the potential of achieving that goal, such as increasing staff skill, or applying a
different development process. The GQM paradigm cannot select the method to be
used, but it allows the change to be monitored through measurement so that the
success of the changes in staff or process instigated can be determined, and then
further future actions taken on the basis of the knowledge gained. The purpose of the
measurement then would be:

3-96

I

I

I

I

I

I

|
I
l
I

r

To evaluate the process in order to understand and assess the benefit of the

change made.

Questions of interest would then be:

What is the normal or standard effort?

What is the effort due to the change?

A knowledge of these goals and questions is necessary before decisions can made on

the appropriate metric(s) to be used in a measurement environment.

A further aspect of the GQM paradigm is the process of goal setting. In Decision
Support Systems (DSS) research [see for example [Liang 86] it is argued that for a
system to be successful it must satisfy in terms of information concerning those
factors which are critical to the organization's performattce in the area supported by
the system. But in this approach it is not the question of measurement which is being
addressed, but rather the question of the object to be measured: measurement is
assumed.

For example, if it is stated that accuracy of the model within the DSS is critical to the

success of the system, then the metrics for accuracy are generally assumed. There
exists within the domain of most of the DSS research:

I. Well established models of the activities (or process) performed and the
results (or product) of those activities. These involve concepts such as profit,
cost, or production levels.

2. Well established links between the activity models or results and the metrics
used for those activities or results. These might include gross profit, net profit,
average cost, or units produced per day.

The link between these two is the question being asked concerning the process or
product which is determined by the goal being pursued. For example, the motor
vehicle production manager might have a goal to increase production by 2% over the
next month. Through the production model this goal might immediately trigger
measurement of:

1. the existing production level measured in units per day
2. the rate of production over the target month, again

measured in units per day.

This example appears trivial because the process and product models are so well
understood and the metrics so well developed that the GQM sequence becomes self
evident.

In the software process however, we do not have well established models of that
process, nor do we have well established links with the metrics that might be used to
characterize that process or product.

If for example a software manager is asked to identify his major aims he might
indicate:

3-97

and

I. To complete projects on time
2. To complete projects within budget
3. To deliver a quality software product
4. To maintain development staff morale.

Based on this, systems can be designed which focus their attention on those aspects of
the manager's task, but the problem of determining the appropriate metrics for

product "quality', "staff morale', "on time', and "within budget" are more complex than
if the goals are stated in terms of well known metrics such as net profit or average
cost.

The aim of this paper is to develop a TDC structure or model for the perception of
software development resources which will assist in the process of taking those aims
of, say, a development manager and translating them into a set of questions and
metrics which can be used to measure the software process.

The paper is directed towards the first three levels of the Basili & Weiss list. This is

less common in software engineering research which has been predominantly directed
_tt levels three to six; defining metrics and analyzing relationships between them.

If we aim to construct a measurement environment suitable for different organizations
and management, then this generalized environment must be able to include all of the
six levels suggested by [Basili, Weiss 84], and to do this, a model of resource use is
needed on which to build this measurement environment.

3. THE PROJECT ENVIRONMENT CHARACTERISTICS

Resources are consumed during the software process in order to deliver a software
product. The software process has overall characteristics which are super-ordinate to
the resources consumed. Therefore, before resource data can be characterized it is
necessary that a process characterization profile be established. This characterization
includes data on factors such as:

project type
organizational development conventions

project manager preferences
target computer system
development computer system
project schedules or milestones
project deliverables

In this data the broad project and its environment characteristics are established. For
example, is the process using evolutionary development or a waterfall method? Is the

project to be developed by in-house staff or external contractors? What organizational
constraints are being imposed on the project development time? What management
constraints are being imposed, say on staffing levels?

These factors form the environment in which the software process must occur, and
will therefore determine, in many ways, the nature of that software process. A simple
example of this is the question of the process model - evolutionary or waterfall. This
constraint establishes milestones and the pattern of resource use, and therefore
partially determines the interpretation of the resource data collected.

3-98

I

Ii
|
I
Ii
I
I
i
i
I
I

!

I
i
t
I

4. THE RESOURCE CLASSIFICATION

At the level below the characterization of the project and its environment we are
interested in classifying the resources consumed in the generation of the software

product. In this section of the paper we present a structure for that classification. This
structure covers only the resource aspect of the project and is therefore only
concerned with the software process and the resources consumed or used in the
process. The model is not concerned with the software product.

The model structure consists of a four dimensional view of the process. The four
dimensional view presented here is divided into two segments:

I. resource type, and
2. resource use

In a software process the two segments being separated are (1) the nature and
characteristics of the resource, and (2) the manner in which we look at or consider the
consumption of that resource.

4.1 RESOURCE TYPE

In the first segment we are concerned with classifying the nature of the resource; is it
someone's time, or a physical object such as a computer, or a logical object such as a
piece of software? We are also interested in describing the properties of those
resources such as description, model number, and cost per unit of consumption.

By decomposing the resources into different types different views of the resources can
be provided. For example, it may be important for operations personnel to know a

breakdown of the hardware resources used on a project according to the different

physical machines being used, whereas from a project manager's perspective at a point

in time, the specific machine may not be of interest,but the availabilityof a certain

classof machine may be critical.Resource managers will be interested in the type_ of

resources available (for example, people) and the characteristicsof those resources for

project planning purposes. Thus the categorization provided here is the basis of the

resource management environment, in that it isin this segment of the model that the
resources are listedand described.

The resources of a software project can be classifiedas:

.hardware

.software

.human

.support (supplies,materials,communications

facilitycosts,etc.)

These categories are mutually exclusive and exhaustive and therefore are able to

contain each instance of resource data in one or other of the categories.

Hardware resources encompass allequipment used or potentiallyable to be used

in the environment under consideration. (For example, target and development

machines, terminals, work stations).

3-99

I

Software resources encompass all previously existing programs and software
systems used or potentially able to be used in the environment under consideration.
(For example, compilers, operating systems, utility routines, previously existing

applicati_,a software).

Human resources encompass all the people used or potentially able to be used
for development, operations, and maintenance in the environment under consideration.

Support resources encompass all of the additional facilities such as materials,
communications, and supplies which are used or potentially able to be used in the
environment under consideration.

The values associated with these resources may be stored in both price and volume

measures, where volume means, for example, hours of use or availability, or the
number of times a resource is needed, and price refers to the $ values associated with
that resource. This may be a cost per unit measure or a cost per period of time.

This four-way classification provides an initial resource-type decomposition. The aim
in this decomposition is to separate the major resource elements that are used in the
software process in order to provide manageability: This initial separation is necessary
because of the very different nature of each of these resource types and the
consequent difference in attributes and management techniques which are necessary in
the estimation, evaluation, and control of each of these resource categories.

Further decomposition within this segment may be desirable and will be dependent on
the goals of the responsible persons. The number of different possibilities increase as
the decomposition continues within each of the major resource categories. For example,
the exact nature of the resource decomposition within the hardware category will vary
significantly from one organization to another because of the different hardware
utilized and the organizational structure surrounding that hardware utilization. For
example, it may be desirable to decompose hardware into target and development
hardware if there is a difference, and software into operating systems and
languages/editors in order to model say the availability of cross-compilers.

4.2 RESOURCE USE

Over the type segment we need to impose the second segment; the "use" structure. The
categorization within this dimension allows the resources consumption to be associated
with different perspectives of the software process. For example, it is through this use
structure that we are able to distinguish, for example,

between prior-project expectations of cgnsumption and
resources actually consumed, or

between resources consumed in each phase of the project, or
between the utilization of a resource and the

availability of that resource, or
between an ideal view of resource planning and the resources

actually available

The use structure consists of:

3-100

!

l
I
!
l
I
t
:,|

i
1
!

!

I
i
i
I
|
I

I

I

i
1
!
I
I
i
I

i
I
i
I
I
i
I

i
I
I

1. INCURRENCE
1.1 Estimated
1.2 Actual

2. AVAILABILITY
2.1 Desirable
2.2 Accessible
2.3 Utilized

3. USE DESCRIPTORS

3.1 Work type
3.2 Point in Time
3.3 Resources Utilized

4.2.1 INCURRENCE

This category allows the resource information to be gathered and used in a manner
suitable to the management of the resource. It is necessary, for example, to store data
on estimated resource usage, resource requirements, and resource availability.

This data is necessarily kept separate from the actual resource incurrence or use,
which is stored via the actual category.

These two categories then permit process tracking via comparisons between them and
extrapolation from the actual data. At the project summary points, explanations and
defined data accumulations on estimated and actual resource use provide feedback on
the process. This feedback should contain reasons for variance between the
estimated and actual so that a facility for corporate memory can be established and
the necessary data stored to facilitate and explain any updates of the current resource
values. It needs to be noted that the model proposed allows for different estimates and
actuals at different points in time.

The two classifications arc the basis for the structure proposed because they constitute
significantly different viewpoints on the process, and again provide mutually
exclusive categorization which will facilitate management estimation, evaluation, and
control.

This structure requires that process data, as it changes in value during the project, will
not be lost but will be stored in an accessible manner so that meaningful analysis of
projects can be carried out using a database that provides complete details of the
project history.

This philosophy specificallyaddresses the need for a corporate memory concerning

past projects.By implementing such a structured project log the basic data for such a

memory isavailable in numeric and text format.

3-101

10

4 •2.2 AVAILABILITY

This category allows storage of a resource use by:

.desirable
.accessible
.utilized

This categorization provides further refinement of the resource data. Through this,
and say the incurrence category, it is possible to compare the actual resources utilized

with the estimated utilization, and then trace possible reasons for variance through the
desirable and accessible dimensions. That is, differences between planned availability
and actual availability of a resource will be significant in understanding the software
resource utilization that occurred during the process.

Desirable is defined as all the resources that are reasonably expected to be
of value on the project.

Accessible is a subset of desirable (when considering the project resources
only) and is used to define the resources which are able to be used on the project.

The difference between desirable and accessible is those resources seen as desirable for

the project but which were not available for use during the project. This difference
may occur, for example, because of budget constraints or inability to recruit staff. The
desirable resource list permits an "ideal" planning view. When compared with
accessible it allows management to see the compromises that were made in establishing
the project, thus facilitating a very explicit basis for risk management within the
resource database. The database is thereby able to hold views of not only the resources
actually applied to the project but also those resources which were considered to be
desirable along with the reasons for their use or non-use. In this way the resource
ti, ade-offs arc made explicit.

Utilized is a subset of accessible and is defined as the resources which are

used in a project.

The difference between accessible and utilized represents those resources available for
the project but not used. This difference will arise because of three possible reasons:

1. The resources prove to be inappropriate for the project under consideration,
or

2. The resources are appropriate but they are excess to those needed
3. The resources are appropriate, and their use is contingent on an uncertain
future event.

The use of these storage categories is somewhat complex and is explained in detail
further below in section 4.4.2.

Through this availability category we are able to distinguish between:

3-102

I

I
!
I
i

!
i
I

I
i
I
li
i

I
/

I
I

I

!

i
i

I
i
I
I

II

(I) the resources which are reasonably expected to be beneficial to the process
(desirable),

(2) the resources which exist in the organization and are able to be used if
needed (accessible), and

(3) the resources which are used in a project (utilized)

Through this categorization it is then possible to track resource-usage and to pinpoint
their use or non-use and to ascribe reasons particularly to their non-use as in the case
of non-accessibility. As in the INCURRENCE category, the reasons for divergence
between desirable, accessible, and utilized are stored in a feedback facility.

4. _. 3 USE DESCRIPTORS

This category provides a dcscription of the consumption of the resource item in terms

of three essentialcharacteristicsof the consumption that item:

1. The Nature of the Work being done by the resource:(e.g.coding,
inspecting,or designing) This category can be used in conjunction with other

views to distinguish between process activities,such as human resources

estimated to be desirable in desian work, or machine resources actually

utilizedin testj, nq, or elapsed time implications of inspections.

2. Point in Calendar Time: This category pinpoints the resource item by

calendar time. In this way resource items (estimated or actual;desirable,

accessible,or utilized)arc associated with a specificpoint in time or pcriod of

time. This facilitatestracing of time dependent relationshipsand the
comparison of resource values over time.

•3.Resources Utilized" This category measures the extent of resource

consumption in terms of hours, dollars,units,or whatever isthe appropriate
measure of use.

The Use Descriptors also provide the link to the work breakdown structure which is

commonly embodied in process models. This link is established through the association

of a particular piece of work being done at a point in time with the work package
described in the work breakdown structure.This point is discussed further below in

Section 8, Validating the Model.

4.3 COMBINING THE VIEWS

The structure suggested here can be viewed as a

explanation. Such a hierarchy isshown in Figure I.

hierarchy for the purpose of

3-10"3

12

con1_t of

(Description, milestones, target harOwar(

development hardware, dellveraPles, etc.)

resource

TYPE
resource

(Hardware, software, human,

support plus attributes of the
resource)

USE DESCRIPTORS
resource

(Work nature, Calendar time

Measure of work)

INCURRENCE estimated actual

desirable

AVAILABILITY

accessible utilized

FIGURE 1. THE STRUCTURE OF THE TDC MODEL

3-104

I

I

i
I
I

i

i
!
!

i _

I
I
I
!
i
I
i
|
I

,

i 13

i

i
1
1
I

I
I

I=

In this figure we see that the proposed structure views the software project (which has
attributes describing that project) consuming resources. The resources are characterized

as having four dimensions of interest (type, use, incurrence, and availability). At the
resource type level we describe each resource as being one of hardware, software,
human, or support, and having various attributes. The attributes for each of these four
types will be different in nature. For example, the human attributes might include
name, address, organizational unit, skills, pay rate, unit cost, age, and so forth. The
attributes for hardware will be quite different, describing manufacturer, purchase
date, memory capacity, network connections, or similar types of characteristics.

At the next level in the diagram we model the use of the resource. In the first instance
this involves the type of work that the resource is performing, the point (or span) in
calendar time at which the work is being done, and the measure of the amount of
work done. This last measure (amount of work) might be expressed in person-time,
execution-time, connect-time, or whatever is the relevant measure of work for the
resource instance.

The use of the resource is then described as being either estimated or actual, and both
of these may be desirable, accessible, or utilized. In this way the following concepts
are supported:

I- Estimated Desirable: The resources considered "ideal" at various

stages of the planning process.

2. Estimated Accesslb],e: The resources which are expected to be
available for use in the process, given the constraints imposed on the software process
(a contingency plan).

3. Estimated Utilized: The resources which it is anticipated will be
used in the software process.

t 4. Actual Desirable: With hindsight, the resources which proved to be
the "ideal" considering the events that occurred in the software process. A part of the
learning process.

I
i
I
I
I

5. Actual Accessible: Again with hindsight, the resources which were
actually available and could have been utilized. A part of the learning process.

6. Actual Utilized: The resources actually used in the software process.

Categories one through three are used initially for planning purposes. The numeric
and text values associated with each of these three categories may be derived from:

a. individual or group knowledge
b. a knowledge base
c. a database of prior projects, and/or

d. algorithmic models

At the very simplest level, the planning process might establish only numeric values in
the estimated utilized category based on individual knowledge alone. In essence, this is
the only form of estimation used in many organizations, wherein project schedules and

budgets are established by an individual, based on that individuals experience. These

!
3-105

I

I

14

estimates represent the expected project and resource characteristics for the duration

of the project.

The extensions suggested here allow these estimates to be enlarged in the following
dimensions:

!
i
I

The nature of the estimate
The source of the estimates

The timing of the estimates

1. The nature of the estimate. The model allows project and resource
managers to distinguish between desirable, accessible, and utilized estimates as
discussed above. The estimated desirable dimension would be used at a fairly high
level in the project planning process to outline the hardware, software, people, and
support resources that are considered to be desirable for the project. This may list
specific pieces of hardware and software which are desirable at certain points in time.
It might also be used to list characteristics of the people (such as skills) that would be
ideal on the project. The accessible dimension would then reflect the expected
resources that will actually be available to be used. Again this could be at a fairly
high level, indicating the resources available, the differences between these and those
desirable, and the reasons why the two categories do not agree; reflecting cost
constraints, or risk attitudes which have been adopted as part of the project
management profile. The utilized category would normally extend to a lower level in
terms of the project plan, detailing estimated resources perhaps down to the work
package level and short periods of time.

2. The source of the estimates. It was suggested above that there are
four major possible sources for these estimates; individuals or groups of people, a
knowledge base, a database of prior projects, and algorithmic models of the process.
Each of these should be supported in a measurement environment, and each has
significant implications with respect to the design of such an environment. The
current state of the art appears well equipped to support algorithmic models of some
parts of the estimation process (for example, estimates of project effort based on one

of the many available estimation packages such as COCOMO [Boehm 81], SLIM
[Putnam 78], SPQR [Jones 86]). Similarly the tools available in the database
environment allow the storage and retrieval of numeric data on past projects. However
the storage and searching of large volumes of text data on prior projects, the use of a
knowledge base, and the support of group decision support processes are all the subject
of current research (see for example, [Bernstein 87], [Nunamaker, et.al. 86], [Barstow
87], [Valett 87]).

The timinq of the estimates. In the structure suggested, all estimates
may be made before the commencement of the software process and also at any point
in time during the process. However there are certain points in time during the process
at which estimates are more likely to be updated. These are:

1. at project milestones
2. at manager initiated points in time at which major divergence between
estimate and actual is recognized by the manager
3. at system initiated points in time at which the measurement system
recognizes a potentially significant divergence between estimate and actual

The third possibility implies that the measurement system is able to intelligently
recognize the existence of a problem with respect to the comparison of actual and

3-106

I

!
I
I

I
I

I
I

I
/
I
i

I
I

i

I

I.
!
I
I
I
i,

I
I
l
I
i
I
i
I
I
I

l
i

15

estimate. This facility is suggested as needed because one of the major management

stumbling blocks is generally not concerned with taking action once a problem is
identified, but the identification of the problem in the first place. This identification

problem occurs because of the volume of data that needs to be processed in order to
recognize a potential problem state. It is the measurement environment which is expert
at processing the data volume. It is the manager who is expert at taking corrective
action once the problem is highlighted.

Categories four (actual desirable) and five (actual accessible) of the structure exist to
provide a feedback and learning dimension to the project database. These values
would be determined after the project is complete. And in the comparison of the
estimates made at various stages of the process and these two categories, a process is
facilitated in which the organization can learn based on the variance of expectations
and actual which have occurred in the past projects. As with the estimates, the
categories of desirable and accessible are used in order to allow the comparison of
"actual ideal" with "actual available" so that an ex-post view of the management of the
process can be captured. The question being asked here is; "How could we have
handled resources better?" It is a learning mechanism to generate explicit new
knowledge for the knowledge and data bases, and also to improve individual and
group knowledge.

Category six (actual utilized) will be the most active category within the structure,
carrying all of the values associated with the resources of the project. These values
will be updated on a regular basis throughout the software process, and will be the
source of the triggering process mentioned in the discussion of updates to the
estimates.

The data collected during the project should be able to:

1. increase individual and group knowledge
2. improve the knowledge base
3. add to the prior project database, and/or
4. support the algorithm determination process in the individual organization.

In summary, the model proposed is a four dimensional view of resource data. The four
views in the data model are:

1. RESOURCE TYPE: which is a mutually exclusive and exhaustive
categorization which captures the nature of the resource.

2. INCURRENCE: which is also mutually exclusive and exhaustive describing
actual or estimated resources. It carries an additional feedback element to

contain the corporate memory explaining the difference between the category
values and differences over time.

3. AVAILABILITY: in which each category is a subset of the the higher
category, allowing desirable, accessible, and utilized resources. Again feedback
is used to explain the differences between categories and over time.

4. USE DESCRIPTORS: which categorizes specific elements in the nature of the
resource use. These are the nature of the work done by the resource, the point
in time of the work, and the amount of that work.

3-107

16

4.4 USING THE TDC STRUCTURE

4.4.1 AT THE PROJECT LEVEL

Discussion so far has applied the proposed 4D structure to resource classification. It is
appropriate to also consider using this .structure, or a part of it, for the Project
Environment Characteristics outlined in section 3 above. In this way the constraints
acting on the software process can be identified as applying:

to a particular type of resource,
either estimated or actual
with a stated availability

at a point in time,
concerning a particular type of work

An overall model of the software project is shown in Figure 2. In this figure the meta-
entity project is decomposed into a number of tasks or contracts, each task consuming
the recta-entity resource and producing the recta-entity product. In the implementation
of this model the meta-enti'ties will require many entities to characterize them.

consists of

cons_rlTe$ prooUce$

FIGURE 2. AN OVERVIEW OF THE SOFTWARE PROJECT

3-108

I

I
I
I
i

I
,i
I

I

I

t
I

i

i
I

l
I
I
I

!
!
!

!
!
!
!
!

!
!

!
!
!
!
II

!
Ii

17

Thus the project has characteristics, as do the tasks and subtasks, the resources, and

the products. Characteristics at all of these levels need to be stored.

Through the storage of the project characteristics, the constraints acting on the
product or process, determined at any time before or during the project, can be

tracked for consistency, and any changes noted to facilitate a relationship analysis
between the project and-the resource occurrence values accumulated during the

process.

A simple example of the application of this structure would be where the process

organization is changed during the development, say a change toward greater user
involvement. This change would be reflected in a difference between the estimated
project characteristic and those at the point in time at which the change occurred.

This information is then used to explain variances that occur in the process data, such
as a changed pattern in staff utilization.

Examples of the data stored at the project level would include:

the type of project - e.g.real time, business application
the project elapsed time
the total project effort
the total project cost
the type of development process - e.g. evolutionary
the target computer
the development computer
the project deliverables
the project milestones
the project risk profile

The application of the TDC model at this level provides a mechanism for storing
estimates, accumulating actual values, and facilitating feedback and learning at the
level of the project and its development environment•

If we take the project milestones as an example and assume that the milestones apply
equally to all resource types, then the model suggests we store:

•estimated desirable milestones. This isan "ideal world" view of the

project milestones; the dates at which we could deliver if we were not
constrained.
• estimated accessible milestones. Given the constraints we will be

working under, these are the dates at which we could deliver if it were
necessary.
• estimated utilized milestones. These are the dates at which we

expect to deliver, taking into account the dimensions of desirable and
accessible.

These three views, in their values and difference, provide a perspective on the risk
associated with the project; the smaller the difference between the categories, the
higher the risk. More specifically, the difference between estimated desirable and
estimated accessible shows the extent to which elapsed time could be changed if the
constraints could be modified. For example, if the estimated final desirable milestone
were June 30th and the estimated final accessible milestone was August 30th, the
difference of two months measures the estimate of the extent to which the project

could be compressed if the restricting constraints were to be removed.

3-109

18

The difference between the estimated accessible and the estimated utilized provides a
measure of the available slack in the milestones• This difference is the extent to which
the milestones could be compressed, without modifying the project constraints. In the
example above, the estimated utilized final milestone might be say November 30th. In
this case the difference between accessible and utilized of three months reveals the

amount of elapsed time compression that is possible on this project without changing
constraints.

In these relationships we see some of the dynamic nature of the project
characteristics• This suggests that for the TAME measurement environment, if a
change in project characteristics such as the nature of the process occurs, then this
should trigger the review of the project milestone and effort values, which will also be
reflected at the lower level in the task and resource data values.

In the actual category we need to store the:

• actual desirable milestones. As explained above, this category is
used for feedback and learning. It carries the values calculated after project
completion based on the knowledge gained about the project during its
completion. This value is again an "ideal world" value.

• actual accessible milestones This is also a feedback and learning
category which says, based on the constraints which did eventuate in the
process what milestones could have been achieved?

• actual utilized milestones. This category stores the dates of the
milestones achieved. Differences between actual and estimated are stored in a
feedback facility to provide a mechanism for learning and a mechanism for
calculating the actual desirable and accessible at project end.

4.4.2 AT THE RESOURCE LEVEL

The description of the use of the TDC structure at the resource level amounts to a
process model of resource planning and use in software development. This process can
be described as an interacting three-stage process involving the sub-processes of:

1. planning
2. actualization

and 3. review

The planninq process establishes and records the resource expectations or estimates
before and during the software project, and the actualization process tracks and
records the actual use of resources during the software project. The review process
compares actuals with estimates for the purposes of modifying the estimates and
learning from experience. In this way the feedback referred to above provides
information for an historic resource database for future planning and estimation.

3-110

I

I
I
I

!

!

II
II
II
I
l

II
l

I1
II

II
I
l
I
II

I1
II

17

THE pROJECT CYCLE:

Figure 3 shows the data flows, stores, and processes involved in planning,
actualization, and modification. This data flow diagram shows three types "of estimates

being made; desirable, accessible, and utilized. The desi_-able resources are
estimated (in process l) by the project estimator on the basis of information
concerning the project and the environment in which the project is to occur along

with any project histories and/or knowledgebase which may be available. The project
history .data contains feedback on prior projects (or corporate memory) which can be
used in the future planning processes. It therefore describes information which has
been gained in reviewing prior projects which was considered to be of relevance to
future projects. The project characteristics and environment information is described
above in sections 3 and 4.4.1. The accessible resources for this project are
estimated in process 2, again by the estimator, using the desirable resources and the
corporate resource database as input along with any history or knowledgebase
information. The corporate resource database lists and describes the resources which
can be called on by the organization along with any commitments for those resources.
Thus it may be that for the project in planning it is deemed desirable to have an
expert in a particular field, but the corporate resource database shows that the only
expert in the organization is committed for the period in question. This would raise a
number of options including:

1. obtaining a further resource (update the corporate resource database)
2. committing to development without the expert
3. negotiating for full or partial de-commitment of the expert.
4. re-analyzing the project characteristics to determine whether the project can
be modified in such a way as to remove the need for this expertise.

If it is assumed that the desirable resources remain unchanged, the outcome will be
that the project in planning either does or does not have access to a desirable expert.
If the expert is not available then this should be highlighted as it constitutes a project
risk which needs to be closely controlled as a part of the project risk management
plan. In this way the differences between the desirable and accessible resources form a
significant database in the process of risk management, since this database reveals
those aspects of risk resulting from decisions to develop the system with something less
than the resources considered desirable.

The process of detailed project planning then continues in process 3, using the project
accessible resource database as one of the inputs to this process, and generating the
project resource plan which contains details of the estimated utilized resources. Once
again the difference between the outputs has meaning. Just as the difference between
desirable and accessible represents a database resource for risk management, the
difference between accessible and utilized forms a basis for contingency planning.
Resources can be "committed" in two ways. The first is when an available corporate
resource is both accessible and utilized. In this case the resource can be considered as a

hard commitment to the particular project. Contingency plans are also permitted in
this system where corporate resources are available for the project but rather than
entering the utilized list they are entered as a contingent commitment to a particular
project. In that way the planning process can allow contingency planning for
individual projects and for corporate resources as a whole. Thus the case may arise,

3-111

2O

corporate
resource

dat_ase

project

other

project
plannlng
Informatlon

resource

use

estlmateO

project characteristics

_oJect

hlstor,/

data

estimated

desirable

project
resources

estimated

accessible

project estimate

resources triggers

mmulata project

t_/_wI_s resource
history usage

FIGURE 3. THE PROJECT CYCLE

for example, where say four projects have indicated a contingent commitment for a
particular type of computer but there is only one available. A decision may be made to
buy another machine based on the perceived probability that the resource will be
needed; not by any one project, but by the four projects together.

3-i12

I

!
M
I

I

I

I
I

I
I

i
I

I
I

1
I
I

i
I

I

I
I
l
l
I
I
I

I
I
I
I

I
I
I
I
I
I
I

21

ACTUALIZATION

As the software process continues, resources used are

resulting in the project resource history data store.

accumulated via process 4,

The actual's data is used in process 5 to monitor the estimates and thereby facilitate

project control. If major divergences between estimates and actuals occur, this may
trigger re-estimation of the needed resources which may result in:

1. a modification of the project resource plan, by allocating contingent
resources to the plan

2. revised estimates of the accessible resources needed resulting in changes in
both the accessible store and the plan, or

3. a revision of the desirable resources. This would trigger a major re-estimation
since some of the perceptions of the nature of the project or its environment
have proven to be inaccurate. The impact of these will need to pursued through
all dimensions of the planning process.

This project review process can provide significant feedback for use in future
planning and estimation.

THE POST-PROJECT REVIEW CYCLE

Figure 4 shows an overview of the use of the proposed structure in project reviews.
The data accumulated during the project are used to review the project and generate
learninq based on the experience with the project. This new data consists of:

It project end :

COrl)orateresource
_tal_ase

\ _ actual
. \ \ _ject a_

estimated I _ ,_ oevelol_neflt
I_OJeCt] X /\ envlrorwnent

ar_ envl_ent _ _41 / \ ¢ttaractertstlcs

oeslr'aole I / / I, _oes,r=le a_

="'::_,,_V I \ '="°"'='"
_oJect history

da_

FIGURE 4. THE PROJECT REVIEW CYCLE

3-113

22

1. additions to the project history database

2. changes to the perceptions of the project and its environment, based on
comparisons between estimates and actuals. For example, the comparison
between actual and estimated milestones may reveal that shorter milestones

were possible, or that desirable milestones should have been set longer. By
making these comparisons it is possible to establish a project learning
environment.

3. changes to the perceptions of desirable and accessible resources. Again
learning is facilitated by the comparison of-estimated and actual. In this way it
may be learnt, for example, that aspects of the algorithmic effort estimation
equations consistently over-estimated for this project. The reasons for this can
be explored and, if necessary, adjustments made to the algorithm.

APPLICATION OF THE PLANNING AND REVIEW CYCLES

In any particular organization, it may be deemed sufficient to use only a part of the
planning and review processes outlined here, and therefore only a part of the TDC
structure presented in this paper.

For example organizations may not wish to use project reviews, or they may not
consider it appropriate to carry out formal contingency planning or risk management.
At the simplest level only the estimated utilized and the actual utilized may be used,
perhaps providing input to an informal project learning process which occurs at the
individual level.

Specifically, it is most likely that in software environments with very little
uncertainty (say an implementation of the twentieth slightly different version of a
well known system) there may be no need to explicitly consider the desirable or even
accessible dimensions of the resource model. If uncertainty is very low, the utilized
level of the model may capture all the necessary data. The advantage of the model in
this case is that the data excluded is done so in the knowledge that there is no
information in those levels not used.

In higher uncertainty environments, the model prompts the estimator to think
explicitly of the resource risks and uncertainty of the development process, and to
quantify or express that risk as a part of the resource database.

5. THE DYNAMIC NATURE OF THE TDC STRUCTURE

In the discussion so far only brief mention has been made of the dynamic
characteristic of the proposed structure. It has been mentioned on several occasions
that resource use occurs at a point in time and that estimates and actuals will differ
over time. However little explanation has been provided of the workings of the
structure in a dynamic sense.

In order to illustrate the workings of the structure over time consider several points in
time:

3-114

II
t
l
g
l

l
l

l
B
t
i
II
I
l
N
l
!

II
I

L.}

to: the point in time of the initial estimates of the
project and resources

tl: a point in time during the software process
t2: a later point in time during the software process

At t o there are no actual resource values and the project characteristics are also
estimates only. At point in time t 1, when work has begun on the project, the database
will have actual values as well as the estimates. In order to illustrate the dynamic
nature of the model consider Figure 5 in which estimates have been changed, and
figure 6 in which actuals have been placed.

t1 woject
ta_tm¢

[IsttmatM
ttltl_

time t I

I_ojECl" TES'rtN8METHOOOLO_

\

\
oNe, in l_sed ¢n

tofc0_l m_u_mouogy
adaDtN s_e to

I _ _ _olec¢

-1 oes,_u.E l
l _ =J ,,,_w_ I
I I ur_mqe) ..,___,..__,_ ._"1 _ORT[STm_

1 _ of tlmlan time (a_xl _fet_t

mll_lm time) for _tll_

since tO

FIGURE 5. DYNAMIC ASPECTS OF THE TDC STRUCTURE AT T 1

Figure 5 shows:

1. the way in which estimates will change over time (in this example it
is the estimated desirable hardware for testing purposes), and

2. the manner in which feedback can be used to provide a record of the
reasons for the changes over time, and

3. the types of processing (e.g. human interaction, knowledge base) that
may be involved in the estimate change.

In this example three reasons for a changed estimate are presented. Firstly there has
been'a revision in the estimated amount of human time which will be required for
testing. This change has been processed through a knowledge base which contains
knowledge of the relationships between human time and machine time in the testing
process. On the basis of this, the estimate is revised. Another possibility is presented

where the project testing requirements have changed due to a change in the reliability
requirements of the project say. This change is shown as being processed through
human interaction to derive a new estimate of the desirable hardware. The third
example provided is a case where the testing methodology has been changed at the
project level, and again human interaction has derived a revised estimate of the
testing hardware requirements.

3-115

24

This example shows how changes in values in one part of the TDC structure will give
rise to changes in values of other parts of the TDC structure. The processing of these
changes is a complex process in which all of the assistance of human interaction,
knowledge, base, and algorithmic relationships will be needed to realize an accurate
revision of the estimate taking into account the interactions and interdependencies
which occur in the process environment [see Abdel-Hamid, Madnick 86].

The next example, shown in Figure 6, illustrates the relationship between values of the
one resource instance at different points in time, without considering other TDC
category changes. Here we see the actual human resource utilized in design being

updated, to take. account of. the work done in the period tl. to t2. At t 2 the new actual
ts compared wxth the esttmate for t 2 and the resultant ptcture (t 1 actual, t 2 actual,
and t 2 estimate) used as input to the-process of updating the estimates for t3-through
tn. The figure shows this process occurring though the facilities of a knowledge base
containing information on inter-period human resource relationships as well as human
interaction. The changes made to the estimates are logged and explained via the
feedback mechanism of the TDC structure.

0ESIGN RESOURCES
AT T2

I I j'_sllI _ESOt_C,NSttnUZr'O
Incrgmtntal

compare

+

RESOURCES UTILIZED

IN 0ES 6N TO T2

ESTIMATED HUMAH

I_$ T3 TN

J

FEEDBACK ON THE

(_ ESTIMATES

FIGURE 6. DYNAMIC ASPECTS OF THE TDC STRUCTURE -

USING TzAND T 2 TO MODIFY T 3 THROUGH T N

In the design of a measurement environment database it will be necessary to define all
of these inter-period and inter-category relationships so that the environment is able to
receive input and provide output in line with the environment goals.

3-i16

I
l

i
I
I

I
I

i
I

I
!
I
I
I

I
I

!
!
!
!

!
!

!
!
!
!
II

!
II

II
!

II
!

|

25

6. APPLICATION OF THE MODEL IN EVALUATION

To illustratethe use of the model a simple management goal is proposed and a set of

questions listed which flow out of that goal. The model is then used to provide a

structure for the metrics which are relevant to answering the questions posed. A more

detailed illustration is given below in section 7, in which the TDC structure is used to
suggest question of interest within the GQM paradigm.

GOAL:

To evaluate the effect of a particular software engineering methodology on project
resources

PURPOSE OF THE STUDY

To evaluate the development process used in order to improve it.

PERSPECTIVE

Examine the effectiveness and cost of the methodology from the point of view of the
development manager.

POSSIBLE QUESTIONS

Project Level

(l) Did the use of the software engineering methodology improve adherence to the
project schedule?

Adherence to schedule is a question which is not directly concerned with the
expenditure of resources. At the project environment characteristics level, details of
the schedule or milestones for the project are stored as outlined above. Comparison of
estimated and actual utilized can be carried out and details from the feedback details

concerning the milestones used to determine whether the methodology was observed to
have any impact on the schedule. To establish the improvement (if any) in adherence
to schedule, comparisons need to be made with the INCURRENCE feedback values for

other projects having similar characteristics but not using the particular software
engineering methodology.

Resource Level

A. Hardware

(l) Did the use of the software engineering methodology increase or decrease
hardware resource requirements for this project as compared with those for
similar projects?

This question signals access via the hardware resource type with comparisons between
estimated and actual utilized (if the estimate was based on prior similar projects)
and/or between actual utilized for this project and actual utilized for similar ,projects
(based on the project environment characteristics) if a differe_at estimation process was
used. This assumes a database of similar data from prior projects.

3-117

26

B. Software

(l) Did the use of the software engineering methodology result in increased or
decreased software resource requirements?

This question indicates a search via the software; estimated and/or actual; utilized
domains making relevant comparisons, e.g. Was a compiler needed for a greater period
of time than was estimated utilized? Had the question been phrased in another way,
say: Did the methodology result in unexpected resource requirements? The search
triggered would be via the software; estimated and/or actual; accessible/desirable
dimensions of the model, using the point in time to pinpoint the stage at which it
became obvious that changed resources were needed, if this were the case. e.g. Was a
compiler shown as actual accessible which was not also shown as estimated accessible,
or even estimated desirable? Or at what point in time did the compiler enter the list of
estimated accessible, signalling a change in the understanding of the requirements of
the process.

C. Human

(l) Did the use of the methodology increase or decrease the requirement for
specific types of personnel?

This question requires a search using the human; estimated and/or actual; desirable;
point in time dimensions to find a change over time in the human resources needed on
the project, e.g. Did the estimated desirable, accessible, or utilized human resources

change during the process with the feedback dimension showing a changed perception
in the human requirements as a result of an insight into the methodology and its
human resource implications. Another possibility suggested by the model is a search of
the project environment characteristics and the resource level comparing this project
with prior similar projects in a project database in terms of the human resources
judged desirable at project end.

(2) How much additional training was required?

Once again this will involve a search of the human; actual and estimated; utilized;
work nature dimensions comparing actual training with estimated on this project and
comparing actual on this project with other similar projects in a project database.

(3) Was there a reduction in total project effort, and how was this distributed
across each phase and activity?

This question is again very similar, requiring access via the human; actual and
estimated; utilized; work nature and resources utilized dimensions, e.g. If the estimates
were based on the use of a prior methodology, then the divergence of actual and
estimate may reflect in part the impact of the methodology. The extent of the
methodology impact should be stored in the feedback dimension of the comparison
between actual and estimated effort if it can be estimated. Alternatively the
information may be gained from a search of a prior project database comparing this
project with other similar projects.

3-118

I

I
I

!
I

I

I

I

I

I

I

1

I

I

I

i
I

I

i

I

i

!

i

I

I

l

l
l
l

I
l

I

I
I

I

27

7, USING THE MODEL IN THE GOM PARADIGM

One relationship between a GQM Process Template and the TDC model is that of
interaction during the application of the template. In applying the process template to
a particudar goal area it is relatively easy for someone to specify the first four
categories: the goal type, purpose of study, perspective, and environment. It is much
more difficult, however:

I. to develop the questions which are capable of answering the concern
expressed in the first four categories.
2. to realize the data relevant to those questions
3. to determine the source of that data, and
4. to design the method of data analysis and presentation.

It is in these four areas that the TDC model can provide assistance

If we take an example where the purpose is to evaluate an estimation model. The TDC
model suggests that there are questions of interest at both the project and process
level. For example, question concerning the fit between the estimation model and the
project, and the project milestones are answered at the project level. Questions
concerning the resources of the process are answered at the resource level.

The TDC model suggests that:

I. There are project characteristics which need to be considered in the
evaluation of the estimation model.

2. The estimation model needs to be evaluated in terms of its applicability to
the four resource types.

3. The estimates made using the model should be compared with the actual
resources used.

4. The desirable and accessible dimensions of the TDC structure may provide
insights into the use of-the model in the particular environment.

5. The extent of the fit between the estimated and actual use descriptors of the
TDC model and their relationship to the actual work breakdown structure, can
be used as a measure of the extent to which the estimation model is integrated
with the actual process model used.

Consider this problem of an organization applying a new model for project resource
and schedule estimation. One purpose might be to determine if the model is effective
in that it does a better job of estimating resource and schedule than prior models or is
accurate within some predetermined tolerance. For such a goal, the TDC model as

presented so far and the GQM paradigm can be brought together as follows.

GOAL:

PURPOSE OF THE STUDY: To evaluate a project resource and schedule estimation
model in order to assess it.

PERSPECTIVE: Examine the predictive capability from the manager's viewpoint.

3-119

28

ENVIRONMENT:

PROCESS QUESTIONS

QUALITY OF USE:

(in order to ensure a thorough understanding of the nature of

the process being evaluated, and the use of that process)

Characterize the estimation model.

What resources does it track? (e.g. hardware, software, human, support)

What activities does it track? (e.g. design, coding, review,...)

What milestones are used in the model?

Was the estimation model designed for the project class?

Was the estimation model designed for the project deliverables used in the
organization?

How well was the estimation model followed?

What desirable items were not available? (compare the desirable lists with the
available lists.)

What accessible items were not utilized? (Compare the available lists with the utilized
lists.)

How well was the model communicated to the developers?

How well was the model applied?

DOMAIN OF USE:

(in order to understand the environment in which the process
is being applied)

How well was the software problem understood?

How well were the methods to be used understood?

How well were the tools understood?

How well was the hardware understood?

How well was the software environment understood?

EFFORT OF USE:

(in order to understand the cost of the application of the

process)

3-120

I

I

I

I
I

I
I
I

I
I

I
I
I
i

I
,I
I

i
I

l

l
I
I

!
i

I

I
I

i

i

I

I

I

I

I
1
1

I

29

What was the cost of applying the estimation model?

What was the relationship to the total project cost?

What was the cost of each activity?

What were the dates for the completion of each milestone?

EFFECT OF USE:

(in order to assess the impact of the application of the

process)

What were the differences between estimated and actuals for each phase, activity, and
in total?

!

What are the resources (by type) expended on this project versus the resources
expended on the normal software development of the same type?

FEEDBACK FROM USE:

(in order to learn from the evaluation process)

For each difference between estimated and actuals, what were the reasons recorded?

What changes need to be made to the model to improve its predictive power?

To what extent is it felt that the estimates drove the actuals in terms of values
incurred?

8. VALIDATING THE MODEL

Two significant pieces of work in the literature which provide definitions of the types
of data needed to support the measurement of the software process are [Tausworthe
79] and [Penedo, Stuckle 85].

Penedo and Stuckle (P&S) provide an excellent structure and content of a project
database for software engineering environments which can be used here to test
whether the model resulting from the top-down methodology employed is able to
encapsulate all of the process data suggested by them as needed in a project database.
Table 1 lists the entities identified by Penedo and Stuckle and associates the particular
model categ6ries which would be used in the model derived here to describe them.

The first aspect which is noticed when mapping the 31 P&S entity types to the TDC
model is that the broad structure presented in section 3 above (The Project
Environment Characteristics) is an important link between the software process and
product. The P&S list contains entities for the project, task, product, and resource
categories of Figure 2. In table 1 the P&S entities such as the requirement and risk
have been categorized as project characteristics, while entities such as data component,
external component, document, interface, product description, product, and software
component have been categorized as product instatices.

3-121

3O

But the focus of this paper is not on the project or the tasks which go together to

make up that project. Rather the focus is the resources consumed by those tasks. In
this respect we notice that only a subset of the available TDC categories are used in

the P&S entities. For example, at the Resource Type level we see instances of all four

categories'(Hardware, Software, Human, and Support), but at the next level it appears
that the P&S model concentrates on actual values. It is difficult to see how the P&S

model stores values for estimates, and particularly how the information explaining

divergence between estimate and actual can be stored. The same applies to the

Availability level of the TDC structure. The P&S model appears to concentrate on the

Utilized aspect and does not appear to model the other availability dimensions

presented in the TDC structure. This may well be because these dimensions of resource
data were considered not to be necessary in the environment of the P&S study.

Pen,do & Stuckle

Entities

Accmmtable Task

and Contract

Change Item

C_sueable Purchase

Data Co,ponent

Dictionary
0ocueeflt

Equipaent Purchase

External COlponeflt
Hardware Architecture

Hardware Colponent
Interface

Milestone

Operational Scenario
Person

Problew Report
Product

Product Oescription
Requirement
Resource
Risk

Si*ulatlon

Software Coeponent
Software Configuration
Software Executable Task
Soft.are Purchase

Test Case

Test Procedure

Tool

iBS Eleeent

Top OownModel

Categories

The task and contract are the

convergence of process

and product and subsets of the project.
It is in a contract

or task that resaurces are consuaed

to produce the product, They are not9

therefore, resource entities,

This ires is generally associated .ith a

product change.

sSupport resource, incurrence and availability not specified.

Product Entity

eSoft.are resource, or perhaps product entity

Product Entity

*Hardware resource

*Hard.are resource or perhaps Product Entity

eHardware resource or perhaps product entity

*Hard.are resource or product entity

Product Entity

*Project Entity

Product Entity

*HumanResource

*Process as part of feedback or Product entity

Product Entity

Product Entity

Project Entity

*Support resource

mProject Entity

Productentity

Product Entity

Product Entity

Product Entity
*Softuare resource

*Software resource and/or product entity
*Task or project characteristic
eSoftware resource

Project Oecoeposition Entity, aay be the saae
as accountable task and contract

Table l. P&S Database Entities in The Model Structure

3-122

l

l
I
l
l

I
I
I

|
I

I
I
I
I
I
I

I
]
I

h

I

I

I
)

I
I

I

I
I

I
I
I
I
I
l
l
!
l

31

It remains to be seen, of course, whether all of the categories available in the TDC
structure are deemed necessary in any particular environment. However, the advantage
of such a structure is that exclusion of certain categories of data occurs explicitly

rather than implicitly.

The second model suggested as a means of testing the TDC model is that provided by
[Tausworthe 79]. In this work the model's entities are not presented in a list form, but
are included in text discussion and report forms. For this reason it has been necessary
to convert the form to a list of entities. In doing so it. is always possible that
misconceptions of Tausworthe's ideas may be present. However, even if incomplete, it
provides another test of the suitability of the TDC model.

The Tausworthe structure is very much oriented towards a decomposition of the
project into tasks and the association of resources with those tasks. Thus the modelling
approach used by Tausworthe is somewhat at a tangent to the modelling approach used
here since once again our focus is on resources, not the activities which consume those
resources. This is not to say, however, that it is not necessary to associate resources
wi_n tasks, but that it may be necessary to model resources apart from the tasks that
consume them in order to better understand all of the dimensions of resource data.

The entities listed here are only a partial list derived from the work breakdown
structure, the software technical progress report, the software change analysis report,
and the software change order of Tausworthe's model. From these sources the
following resource data, among others, were identified as necessary to establish a
resource database. Only some of the Tausworthe entities have been listed here. This
has been done to the extent that is necessary to illustrate the conclusions drawn.

From Table 2 it is clear that the focus of attention in the Tausworthe work is the

project and the decomposition of that project into its component parts. Thus we see
that the resource data is associated with particular tasks and activities. In viewing the
data in this way a structure is provided which is excellent for control purposes, in
that it establishes units of accounting which are more easily estimated and controlled.
What is not clear from the structure, however, is how questions of desired versus

accessibleresources can be modelled, nor exactly how actual versus estimated can be

compared and conclusions stored for use in later project estimates.It isalso difficult

to see how the model proposed in the WBS can easily facilitate the analysis of

resources consumed on a particular activity type (say inspections),regardless of the

project phase in which the inspections were done or the project task in which they

were done. Thus questions such as the value to the project of using a particular form

of inspection may be difficult to answer because the data model may make this data

difficult to isolate.However, itis clear that the resource data suggested as necessary

by Tausworthe are readily modelled in the TDC structure.

The importance of the application of the TDC model to the project and task level is
highlighted by Tausworthe and also Penedo & Stuckle, so that the association of
resource data and project work breakdown structures can be facilitated.

3-123

32

Taus.orthe

Entities
Top DownRodei

Categories

Staff:

Staff I.O.

Staff Nose

Staff Phons

Task Activity:
Task I.D.

Task Activity 1.0.

Budget $
Task:

Task I.D.
Task Naoe

Task Oescr

Task fl'ger

Task Budget $, ETC.

Softuare ChangeOrder
Slants ID

Change Order |

Activity IO
Person lO

Description

Start Date, etc.

Huean resource, estiaated or actual

The dollar value say be a sumof all resources

consuoed on a task-activity, estisated or actual

The _alue is a sumof all resources, estisated
and/or actual

The _ocus is again on the activity. The resources

say be any type, sstioated or actual.

Table 2. Tausworths Derived Entity List

9. CONCLUSIONS AND IMPLICATIONS AT THE RESOURCE DATA LEVEL

The discussion above has suggested storage of resource data of a type which has

significant storage and access implications; that of numeric and non-numeric project
and resource data. It has been assumed in the discussion that the resource database is

able to store not only numeric resource values, but also reasons for those values along
with the resource environment characteristics.

A system using these suggestions should be able to efficiently search the non-numeric

data in a manner which will eventually enable the system to propose reasons for

numeric variances which occur in the database. In this way the system must be able to

not only highlight a significant variance, say between an estimated and an actual

resource occurrence value, but it should also be able to search the project
characteristic database and the numeric and non-numeric resource classification

database in order to propose or associate reasons for the.variance.

It can be said that the model proposed here has four broad implications:

1. It proposes a resource categorization which will allow project database

designers to explicitly consider the content of that database against a model of the
resource environment. In this way, a particular individual's view of the resource data

can be positioned in a context and compared with other external views of the same

data. This model should motivate the resource data user to consider the measures that

may be beneficial in seeking improvement in the particular process goals.

3-124

I

I
i

I
I

I
I
I

I
I

I
I
I

i

I
I
I

i
I

33

I

I

I

I
I

I
I

I
I
I

I
I

I
l

2. It suggests a project management system's environment which will be able to
achieve far more in terms of management support than any known environment
available today. It is able to do this because of the extent and dynamic nature of the
model of the resource data proposed.

3. It provides a resource categorization which can be used when considering
relationships between tasks or contracts and resources. Specifically it provides a focus
for the consideration of the resources consumed within a task.

4. It provides assistance when applying the GQM process paradigm, so that
questions which answer the resource purpose of the study are highlighted and the
measures appropriate to those questions are suggested.

i0. REFERENCES

[Abdel-Hamid, Madnick 86]
T.K.Abdel-Hamid, S.E.Madnick, "Impact of Schedule Estimation on Software Project
Behavior," IEEE Software, 3,4,June 1986, pp 70-75

[Barstow 87]
D. Barstow, "Artificial Intelligence and Software Engineering," Proc. 9th Intn'l. Conf.
on S'ware.Eng. IEEE, Monterey, April, 1987, pp.200-211.

[Basili 85]
V.R.Basili, "Quantitative Evaluation of Software Engineering Methodology," Proc. First
Pan Pacific Computer Conference, Melbourne, Australia, September, 1985.

[Basili, Freburger 81]
V.R.Basili, K.Freburger, "Programming Measurement and Estimation in the Software

Engineering Laboratory," The Journal of Systems and Software, 2, 1981, pp. 47-57.

[Basili, Panlilio-Yap 85]
V.R.Basili, N.M.Panlilio-Yap, "Finding Relationships Between Effort and Other

Variables in the SEL," Proc. 9th COMPSAC Computer Software & Applications
Conference, Chicago, October, 1985, pp. 221-228.

[Basili, Rombach 87]
V.R.Basili, H.D.Rombach, "Tailoring the Software Process to Project Goals and
Environments," Proc. 9th Intn'l. Conf. on S'ware Eng. Monterey, April, 1987, pp. 345-
357.

rBasili, Selby, Phillips 83]
V.R.Basili, R.Selby, T.Y.Phillips, "Metric Analysis and Data Validation Across
FORTRAN Projects," IEEE Trans. on Software Eng. Vol. SE-9 No.6, November, 1983,
pp.652-663.

[Basili, Weiss 84]
V.R.Basili, D.M.Weiss, "A Methodology for Collecting Valid Software Engineering
Data," IEEE Transactions on Software Engineering, SEIO,3, November,1984, pp.728-738.

[Bernstein 87]
P.A.Bernstein, "Database System Support for Software Engineering," Proc. 9th Intn'l.

Conf. on S'ware. Eng., Monterey, April, 1987, pp. 166-178.

[Boehm 81]
B.W.Boehm, Software Engineering Economics, Prentice-Hall Englewood Cliffs, New

Jersey, 1981.

3-125

34

[Chrysler 78]
E.Chrysler, "Some Basic Determinants of Computer Programming Productivity," Comm.
of the ACM, 21,6, June, 1978, pp. 472-483.

[Jeffery,'Lawrence 79]
D.R.Jeffery, M.J.Lawrence, "An Inter-Organizational Comparison of Programming
Productivity," Pro¢. 4th Intn'l Conf. on S'war¢. Eng. Munich, 1979, pp.369-377.

[Jeffery, Lawrence 851
D.R.Jeffery, M.J.Lawrence, "Managing Programming Productivity," The Journal of
Systems & Software, 5,1, February, 1985, pp. 49-58.

[Jeffery, Loo 87]
D.R.Jeffery, C.C.Loo, "Metrics of Project Size in the Measurement of Programming
Productivity: An Evaluation of Function Points," Technical Report, Department of
Information Systems, University of New South Wales, January, 1987.

[Jones 86]
T.C.Jones, SPQR/20 User Guide VI.1, Software Productivity Research Inc. January,
1986.

[Liang 86]
T.P.Liang, "Critical Success Factors of Decision Support Systems: An Experimental
Study," Data Base, Winter, 1986, pp. 3-16.

[Nelson 67]
E.A.Nelson, "Management Handbook for the Estimation of Computer Programming
Costs," System Development Corporation, Santa Monica, March, 1967.

[Nunamaker, Applegate, Konsynski 86]
J.F.Nunamaker, L.M.Applegate, B.R.Konsynski, "Facilitating Group Creativity:
Experience with a Group Decision Support System," Proc. 20th Annual Hawaii Intn'l.
Conf. on System Sciences, Hawaii, January, 1987, pp.422-430.

[Penedo, Stuckle 85]
M.H.Penedo, E.D.Stuckle, "PMDB - A Project Master Database for Software
Engineering Environments," Proc. 8th Intn'l. Conf. on S'ware. Eng., London, August,
1985, pp. 150-157.

[Putnam 81]
L.H.Putnam, "SLIM A Quantitative Tool for Software Cost and Schedule Estimation,"
Proc. NBS/IEEE/ACM Software Tool Fair, San Diego, CA, March, 1981, pp. 49-57.

[Sackman, Erikson, Grant 68]
H.Sackman, W.J.Erikson, E.E.Grant, "Exploratory Experimental Studies Comparing
Online and Off line Programming Performance Comm. of the ACM, 11,1, 1968, .pp. 3-11.

[Selby, Basili, Baker 85]
R.W.Selby, V.R.Basili, F.T.Baker, "Cleanroom Software Development: An Empirical
Evaluation," Technical Report TR-1415, Dept. of Computer Science, University of
Maryland, February, 1985.

[Tausworthe 79]
R.C.Tausworthe, Standardized Development of Computer Software: Part II Standards,
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

[Valett 87]
J.D.Valett, "The Dynamic Management Information Tool (DYNAMITE): Analysis of
the Prototype, Requirements and Operational Scenarios," M_.Sc. Thesis University of
Maryland, 1987.

3-126

I

!

I

I
I

I
l
I

l
I

I
I
I
l

I
I
I

I
I

!

g

II
II

II
II
li
D

II

II

il
li
i
il

i

!
D
II

35

[Walston, Felix 77]

C.E.Walston, C.P.Felix, "A Method of Programming Measurement and Estimation," IBM
Systems Journal, 16,1, 1977, pp.54-73.

[Wolverton 74]

R.Wolverton, "The Cost of Developing Large Scale Software," IEEE Transactions on
Computers, 23,6, 1974.

3-127

I

!
I

!

!

l

I
l

I

l
I

I
I

I

I
I
l

I

!

i

i

I
I

I
I

I
l

l

I
I

I
I
l

I
l

l
l

SECTION 4 - ADA TECHNOLOGY STUDIES

SECTION 4 - ADA TECHNOLOGY STUDIES

The technical papers included in this section were origi-

nally prepared as indicated below.

• "Measuring Ada for Software Development in the

Software Engineering Laboratory (SEL)," F. McGarry

and W. Agresti, Proceedings of the 21st Annual

Hawaii International Conference on System Sciences,

January 1988

• "General Object-Oriented Software Development:

Background and Experience," E. Seidewitz, Proceed-

ings of the 21st Hawaii International Conference on

System Sciences, January 1988

"Towards a General Object-Oriented Ada Lifecycle,"

M. Stark and E. Seidewitz, Proceedings of the Joint

Ada Conference, March 1987

"A Structure Coverage Tool for Ada Software Sys-

tems," L. Wu, V. Basili, and K. Reed, Proceedings

of the Joint Ada Conference, March 1987

"Lessons Learned in Use of Ada-Oriented Desiqn

Methods," C. Brophy, W. Agresti, and V. Basili, Pro-

ceedings of the Joint Ada Conference, March 1987

0310

4-1

I

I
I
I

I

I
I

I
I

I
I
I
I

I

i
I
I

I

I
I

I
I
I

i
I
I

I

I
I

I
I
I

I

I
I
I

Fr_tkELMcGacry

EatAonalleronautics and SpacoAdm/nAatrntAon

Goddard Space Fllqht Center

Greenbelt, Maryland 20771

wi111_ w. AqraatA

Caaq_ter Sciez_*es CorporntLms

8728 Colesville Road

Sllvlr Spring, Mac,,land 20910

aaSTm_m

l"ne Aaa development lanqua_m and its implied meth-

odologies have the potential to significantly im-

prnvQ _ _mtral soft, re developamnt process and

t_e rosultinq product. At the National Aeronau-

tics a_ Space A_bmAnistration (NASA)/Goddard Spice

Flight Canter (GSFC), _ Software Enqineerinq

Laboratoz_f (SEE,) has been conductinq studios and

experiments wi_h _he Aria development lan_Aaqe.

One such stu_r is the parallel _velopment of a

production fliqht dlmamics system by _m teams of

professional pr_mrs. 3oth teams worked fro:

the same sat of requirmnts, with one team re-

c/uired to use the normaX development process

(FORTRAN), while f.he second teas used the Ads de-

velo_nt lan_. Detailed data were collectnd

durlnq Ohm develogamnt phases to support the anal-

ysis. A discussion of the experLamntal approach

and some of _be key results from early, completed

stuaAea a:e presented.

.-'no Poten_ial of Ads

The Ads languaqe, and its associated meChodoloq_r,

is potantlally one of _J_e most significant SOft-

ware _evelo_ment technoloqies to appear in _he

last 20 years. The potential for improvement lies

in _be inherent nature of Ads to support cmmonly

accepted, high-quality software enqineeri=q prac-

tices such as informntAcn hiding and abstraction.

Some reservations as to :he expected Improvements

generated by A_a lie primarily in _he concern for

the sine and overall complexity of this lan-

guage. 1

Alt._ongh _he relative n_r of reported ez_e-

riencea in _eveloping production-t1_e snftvars

syeto:a in /_a is quite small, sign_flcant proauc-

tivit_ _ain8 have been reported when _da has been
used.',°S_w claims and expectations may, how-

ever, be based solely ca subjective information

raC/_r than on _za_titatlve _mnsurement fro: ac-

tual d_mlopamnt pro_ects. For th_s reason, n_ny

organizations have been reluctant to commit new

projects to using Ad8 until published, completed

experiences are available.

*_a iS a r_istore4 trademark of _e U.S. Govern-

ment, ida Joint Program Office.

There is no doubt that major organizations feel

that marked improvet_ent through kdn is forthcom-

ing. Not only has the Department of Defense (DOD)

mandated _he use of Ada for all mission-critical

systems, bn_ the _ational Aeronautics and Space

Administration (NASA) has selected A_a to be _he

lan_unge for the Space Station program. Neverthe-

less, numerous uncertainties and general Taastione

exist within _he NASA framework:

• WAll A_a be mature? Will production-

gualAty compilers and dsvelopmant envi-

ronmenta be available to produce Space

Station software?

• Ca_ _ho da_lop_ent workforce be ade-

quately _rained inn de and associated

me_hodoloqies in a cimel_ fashion?

• What are the effects of Ads on measures

of significant importance such as produc-

tivity, reliabilit 7, reuse, mainta/nabil-

ity, and portabilitT?

• Kow should a software prodnction envirnn-

merit beau evolve to an Ads development
environment?

Very few empirical studies have been reported to

answer _hese and other obvious questions.

The Keed for _irlcal Studies

To determine the feasibility of using such a new

uechnology as ida for major projec:s like _he

Space Station, studies must be performed to

character£_e performance, run-time environments,

and _he use of ida program design languaqe (PDL).

_n addition, efforts mu_t be ma_In to _termine

maturity and com_!ezity of _ho la=quage so that

planning, training, and applicatlon can be carried

out with some comfortable assurance. Zt is also

possible chat, wlnhOut project e_eriences in

applying the lanqungOo ida may not be the right

choice for such an effort as the Space Station.

In 1982, the University of Maryland conducted

several studies of Ads, one of which consisted of

redesigning and receding inAda a system Chat had

previously been developad in FORTILk_. 4 The

study printed out t_e need for training (in both

methodoloqy amd application), for the davelo_nent

of lan_uage-ludependent requirements, and for a

production support environment for A_a development.

Proceedings of the 21st _nnnei Hawaii International Conference on System Sciences. January 1988.

4-2

To gain further insight into the implications of

Ads, a major study is being conducted at NASA's

Goddard Space Flight Center (GSFC) within the

Software Engineering Laboratory (SEL). The study

involves the near-parallel development of an atti-

tude control simulator by two teams of program-

mers, one using FORTRAN and the other using ida.

The simulator is in support of the Gamma Ray

Observatory (GRO) mission; which is currently

scheduled for launch in January 1990.

The problem chosen for this project is a rela-

tively familiar one to personnel within the Flight

Dynamics Division at GSFC. The simulator must

model

• The onboard attitude control system (ACS)

Sensors and actuators that are used for

control

The spacecraft environment, which in-

cludes ephemeris information and forces

acting on _he spacecraft

Typically, such a system requires between 40 and

60 KSLOC including co_entary and is written in

FORTRAN by a team of 5 to 8 people working over a

period of 18 to 24 months. The team members are

assigned to work from 1/2 to 3/4 time on such a

project.

The $oftvare Enainaerlno Laboratory (SEL)

This particular study was carried out in the

Flight Dynamics Division of NASA/GSFC. This Divi-

sion is responsible for building numerous medium-

to large-scale software systems supporting the

various aspects of mission design, attitude deter-

mination and control, and orbit determination and

control. The SEL 5 has been performing software

development experiments within this environment

for the past i0 years.

The SEL is a cooperative effort between NASA/GSFC,

the Computer Sciences Depart.merit at the University

of Maryland, and Computer Sciences Corporation

(CSC). It is funded by NASA/GSFC and functions as

part of the flight dynamics organization at

Goddard. The SEL experiments with software tech-

nologies by applying _roposed techniques (such as

Ads) to production software projects, then study-

ing the process and product to determine the im-

pact of the techniques. To date, r.he SEL has

studied nearly 50 flight dynamics projects total-

ing nearly 3 million lines of code. Detailed

software development data are collected throughout

the entire llfe cycle of the projects, 5 providing

deeper insight into such parameters of interest as

productivity, reliability, and maintainability.

TBE ADAEXPRRT_'T DESIrnl

Goalm-Ouestlons-Me_ri_,

In setting up the plans for the ida study, the

Goal-Question-Metric paradigm defined by Basili 5

was followed. The major goal of the experiment

4-3

was to gain as much insight into Ada as possible

through a major comparative study. Through nearly

I0 years of experience in conducting similar

studies and collecting data for studying the

development process, the SEL has converged upon a

set of data collection forms that generally satis-

fies r.he types of investigations that are of major

interest. In preparing for the _da experiment, a

set of questions specific to the study were devel-

oped to determine if the basic set of data collec-

tion forms used by the SEL would be adequate or if

additional questions and metrics had to be consid-

ered. In developing the detailed goals and ques-

tions for the experiment, it was determined that

several modifications ('additions) would have to be

made to the existing SEL data collection forms.

The additional data concerns two areas of the

experiment:

A periodic projection by the Ads task

manager about the estimated size (com-

ponents* and lines of code) of the com-

pleted system and the development schedule

More detail for change reports, to deter-

mine whether some features of Ads were

drivers for changes or errors

All the forms were standard SEL forms and were to

be filled out in detail from the beginning of both

projects, including all _raininq time for the Ads
team°

Data Collection

The data collection included the following:

• Forms

Effort data (to the component

level), reported weekly (by each

programmer, manager, and support

staff)

Projection data, consisting of

estimates�sizes�schedules, reported

monthly

Change/error data reported for all

changes and errors identified during

developmenu

Component characteristic data re-

ported each time a new component is

defined for the system

Project characteristics: final s_se" ,

dates, methods used for project

• Interviews--All team members were inter-

viewed periodically to capture key development

factors at major phases of the project such as

training, design, code, and test. These inter-

*A component is defined as a separately compilable

source file containing, for FORTRAN, a subroutine,

function, or block data and, for Adao a subpro-

gram, package specification° package body, etc.

I
I

I

I
I

li
I

I
I

I

I
I

I
I
I

I
I

I
I

I
I
I

I

l
l

l
I
I

l
l

l

Amotmt of computer time used and
number of runs made

• Code Anslyzer--kll SiT, projects era ana-

lyzed at project completion by comput£nq derailed

characteristics of _ source code. For eech com-

ponent and for _e total system, r.he follovinq are

computed:

F_eoutable versus nonewecutable

vtrsus ooamentnry llnes

IIus_er of each type of statement

• ulblr of operands and operators

l_umber end t:ypes of components

This infornmtion has been used in numerous pro-

vista pro_ects to study such relationships as size

and complexity versus error rate and effort. 7

Table I. h_erience of _ T_o _v_1o_emt Tern

CHARACTERS_C

NUMBER OF LANGUAGES KNOWN

(m

TYPESOFAPPUCAT_NEXPE_EN_S
(_smam

YEARSOF SOFTWARE DEVELOPMENT
SX_J_mCS (_U_

TEAM MEMBERS wrrH OYNA_CS
_ULATOR

3

3

4_

M%

ADA
TEAM

7

4

U

43%

Bo_h dev_lopsmnt teams were formed by a homb_na-

tion of personnel from GSFC and CSC. A third team

was formed with _e responsibility for developing

goals; defln£nq data to be collected: performin_

analysis of _he projects" and, in general, runninq

the exl_rinmnt. This third team consisted of sen-

ior representatives from GSFC, _he University of

_aryland, and CSC.

The structure and interrelationship of the three

teams _s shown in Figure 1. The FORTRAN teem orig-

inally (January 1, 1985) had seven team members,

includin_ three from GSFC and four from CSC. The

Ado team also consisted of seven me, bars: four

from GSFC and three from CSC. It was planm_ that

all staff would sveraqe about 65 percen_ of _helr

_im@ for _he duration of the pro_ect. The FORTRAN

sam was observ! to have more experience _n

developinq syscoms s/miler to the G_O simulator.

whereas the Aria team was ezperienced vith more

lan_uaqee (Table 1). Neither experience, capabil-

ity, nor interest were considered by the GS_C and

CSC nmnaqers in for_inq _he development teams- the

makeup of _e _eams wee based almost totally on

personnel aveilabili_y. Only _he tec1_nlcal mana-

ger of _he Ado te am was selected specifically for

The Ado team underwent ex_ensivo training durinq

the first 5 months of the project. This traininq

made use of lectures by University staff and other

Ads experts, video _apes, practice problems, and

key reference books such as Software En=ineerln=

W_h Ado by Bosch. 9 AS a major practice prob-

lem, the _eam developed an Electronic Mail System

(_MS) uein_ recently studied me_dolo_ies as well

as the Ado language. This problem resulted in

approximately 6000 lines of Ado code and was con-

sidered one of _he major successful urainin(] de-

vices used by the seven-person te_.

Durinq the 6-month training period, the ida team

devoted very little effort _o desi_rnin_ the GRO

system, but they were instructed in the concept of

an attitude control simulator. The to_al effort

expended by the team in this trainin_ Period was

21 staff-months (an average of 3 s_aff-months per

person). Experiences and recommendations derived

from the 6 months of training were recorded in an

SEL publication. I0 The Craininq emphasized

design methodoloqy rather th_n _la syntu and

included rJne concepts of abstraction, information

hidinq, and object-oriented design.

4-4

I

I
I

l
I

I
I

I
I

I

I
I
I
I

I
I

I
I

I

I

I
I

I
I
I

l
l

I
l

I
I
I

l
l

I
I

l

Himomm_

A detailed _aqe,mnt/daveloF,ent plan was gener-

ated ac r,he beqinning of _he project. This plan

included salivated schedules, staffing° training]

approaches, data collection, budget_s, and review

schedules for _he Ads development, ll A separate

plan was developed by the FOrlOrN team. No at-

tempt wan made to prevent'_rs of _ho t_o teams

frc_ discnssinq aspects or the projects nlthou_a

in reality _here was verT little ezcha_/e of in-

formation or discussion portaAn_nc] _o the project.

The original plan called for the _ team to be

fAn£shod (through sTsc_m test) in approe_natsAy

24 months° vith robe F0_ team comgletinq system

Cestin4 An appron_tely Z6 sancho. The 8-mouth

difference m to account for _ 6-month trainAnq'

period for _he ida Come and _he expected learning

curve wi_Ja _ new language. The same life cycle,

prelLmAnax 7 and crAtical design review8 (PDR and
CDR), and general hi915-level implementation stand-

ards vNjre set for boris tom. Xt was realized,

hovlver, _lt modifications and exceptions would

h4ve to be mLde for _e ida team as development

pro<yressed and mere was understood about r_o proc-

OS S •

The FORTIU_ toms developed its software on a

WAX-Ill780 computer under VNSo and the Ads team

was to develop its software on a V)_C 8600 using

the DEC _la co-pAler running under VNS. The Ads

team acquired _.he DEC Ads environ_ent:o which in-

cluded _ compile=, debugger, and lanq_uWe-

sensitive ed_Ltor, and this envitomMn_ was used

for r_he duration of _ho pro_ect.

BaCh teams began the project in January 1985. The

FORTRAN tome _Jammd£ately bet]an requirements anal-

ysis, while the Ads come spent the first 6 menth8

in training. _ shown in Yi_ure 2, the traAnincj

time caused _he _ team to incur major delays

compared to _he FORTRAN schedule. This figure

shows only _he calendar t_e associated wi_h each

phase; _hm level of effort, especiall_ for the Ads

te am, varied substantially over the duration of

_he development project.

The FO_UU_ tome completed all ccde and unit test-

in(] by January 1986 and system testing b_ May

1986. The system _eqan operational support in _a¥

1967, after completing all acceptance testing and

software corrections. The s_art of operatioanl

support was about 2 months later _han originally

planned; _he delays _ere caused primarily by sev-

eral major changes to _a system requirements.

The Ads, team began requirements analysis in July

1985 and c_leted all code and unit testinq by

July 1987. Detailed studies of several aspects of

this experiment have been presented elsewhere:

Stark and MurphF 10 analysed _he Ads training;

PWrestA et el. 12 compared _he design character-

istics; and Brophy, Agresti, and Banili 13 and

Godfrey and Brophy 14 discussed r_he dasiqn los-

sons learned. Additional im_licatlons and obser-

vations Can be made from r.he completed analyses in

three categories:

• Product characteristics

• Process characteristics

• Software management imp1Acatlcns

_lunt Characteristics

Al_.houqh _he Ad& system has not been delivered, a

preliminary examination of bo_ _e FORTRAN and

Ads systems has been conducted. A_ore detailed

comparison will be made later. The preliminary

analysis revealed _he following cha=actoristics of

interest.

_. At the start of the project, the study

group dad not know whether the _da product would

be larger, mealler, or about r.he sm size as _he

FOlt'l"_ product in source lines of cod_ (SLOt).

Some claims had been reported _hat redaveloped _la

systems (from FORTRAN or COBOL) were significantly

smaller in lines of code, 2 but it was uncertain

whether _hese claims wore valid for _hAs stud_.

Table 2 shows that the kda product is signifi-

cantly larger than the FORTRAN'product. This is

true for executables, nonenecutables° and commen-

tary. Through review of _he code and discussion

R_TS

A_AL_S

AC(:EF_rANcI[TEST C_q[lqA_

Flq_re 2. _ and FORTRAJI Project ScheKlules W£ekVax'yinq Effort L4_e18

4-5

with the development _eam, it was determined that

the size differential is driven by two facmors:

• Characteristics of the ida language--Such

factors as tTpe declarations and package specifi-

cations required a great deal of source code me

implement. Also, the coding style used by the ida

team provided for relatively long prologs and the

strong use of commentary Cincluding blanks for

forma_ting).

• _ro flexible user interface--Both teams

s_artod with the same set of requirements. The

requirements are o:ienmed more to _he technical

aspects of the applicamicn and less to _he fea-

tures of _he user interface. The ida meam _ook

the opportunity to develop a more contemporary,

screen-orienmed user interface, which required

approximately 40,000 SLOC, nearly four times the

size of _he FORTRAN user interface. An additional

factor# the ida team's not having the schedule

pressure of _he FORTRAN team, also encouraged r_he

ida _eam to develop a more ambitious (and larger)

user interface. Bo_h versions, FORTRAN and ida,

completely sa_isfled system requirements, but the

ida version contained added functionality in the

user interface subsystem. None of the other sub-

systems contained such ex_ensive functional addi-

tions.

Table 2.

TOTAL

TOTAL ¢O_ (INCLU0iNG 8LANK LINES)
OLrLJYERE9 S(X/RCE

REUSED LINES

AVERA_ COW_ETfl" SI_

Pro_ect SAme Comparisons An Source

LAnes of Code (SLOC e

FOWTRAN AOA

4s_eee 1_6,oee

21.o0o (47s_) 72.o00 (s_P,)

24,000 (53%) (13..000(47%)

'tS,OeO('_m) 2,SOO(2'Y.)
.a135

The Desicram Embodled in the ida and FO_T_,aw

Systems Are Different. Some early experiences

using ida for scientific applications 4 showed

tha_ the design of _he ida system "looked like a

FORTRAN design." The SEL study group was inter-

meted in whether the designs are essentially dif-

feren_ or whether the ida system is a receding of

_he FORTRAN design. A comparative study of the

designs 12 concluded _ha_ the designs were dif-

ferent in substantive ways. Some differences were

rela_ed to ida: for example, _he ida package con-

cept facilitated the implementation of _he s_ate

machine abstraction. The ida sys_emshowed many

examples of sta_a machine a_s_rac_ioas when com-

pared witch _he procedural abstractions found in

the FORTRAN system. O_her differences were no_

ida related. For example, _he pacing of the simu-

lation is handled differently in each system.

A_resti et el. 12 present a detailed discussion

of _.he design differences.

The ida System Does Make Use nf the Newer

Features of Taskinaand Generics. For ida to

improve the current FORTRAN-based software devel-

opmen_ process, the features that distinguish ida

from FORTRAN mus_ be used. Occurrences of both

tasking and generics exis_ in _he ida system.

Tasks provide for the user to display ongoing sta-

tus information without interrupting the prog:ess

of the simulation. Generics are visible in two

roles:

For packages of highly cohesive proce-

dures that can be instan_iated for dif-

feren_ definitions of a floating-poin_

data type

For more complex functions (e.g., numeri-

cal integration° ephemeris) that are com-

mon to the application domain

The use of tasking and generics further distin-

guishes _he ida system from the FORTRAN system.

P_ocess 6_x_ac_er_s_i_q

The introduction of ida and rela_ed technology has

affected the curren_ developmen_ process within

this particular environment. Some of the effects

are discussed in this section.

The ida SvsEem Resulted More Effo_t T.

UL. Table 3 lists the s_aff-hours of effor_

for the FORTRAN and ida teams and shows that the

ida projec_ has consumed more resources than the

FORTRAN project. The following significant fac-

tors affect the effor_ da_a reported in the table:

The FORTRAN tea_ reused 36 percen_ of its

code from previous FORTRAN dynamics slmu-
lators.

The ida product is larger than the

FORTRAN product.

The Ada user interface is larger and

significantly different from the FORTRAN

user in_erface.

The s_udy _eam expected _he ida system to require

relatively more design effort and less integration

effor_ than a typical FORTRAN project. The ida

team's design effor_ was greater than _he FORTRAN

_eam's, but Table 3 shows a much bigger difference

in the coding phases. The data in Table 3, how-

ever, use the CDR date (which may be a somewhat

arbitrary or artificial discrimination between

design and code) for dividing design effort from

coding effort. Ada raises questions concerning

the appropriate points for milestones marking

Table 3. Pro_ec_ Effor_ Comparisons

TRAINING

RC-OUIREMENT_ NOd.YS_q

0F.S_N

COO| kJNlOuNrr TF.ST

SYSTEM TEST

ACCEF_I"ANCE TEST (Wrl"H
ENHANCEMENTS ANO
GORRECllONS)

t STAFF-HOURS DURATION IN
CAL_4OAR MONTHS

m

FORTRAN AOA FORTRAN AOA

0 313(I 0.0 6,0

972 1502 1,.S 3.0

32."7 3801 4.0 ?.0

10047 1.5 1S.O

2955 420Qa $.0 (LOs

N/A 1'tO N/A

sACTUAL HOUR_ THR_JGH SEPTEMBER 16,1907 ESTIMATED FOR
SEPTEMBER IS, 1947o TO OECF.MBER 31, 1987

4-6

I
I
I

I
I

I
I
I

I
I

I

I
I
I
I

I
I

I
I

I

!

!

transitions between phases. For approximately

5 mon_hs following _he CDB. the Ads teas was en-

tering package specifications correspondlnq to its

desiqn. This effort certainly could be character-

ized as design, buC was counted as coding time in

Table 3. A reasonable condition for an Ads CDE

may be the cempletlon of suc_ package specifica-

tions and type declarations. Ads offers this op-

portunity to check desiq_ consistency wir.h the

costlier.

The Bietot-y O'C Source Code G_ and _e

Reflects S,jcmlflemst Differences in the Ads aml

Tracking r_he historY of addi-

tlons of source code to the development librarY

Z_

2.4 --
Z2f "'--

, o_,/,_ _ J

u_--_ I

I provi4es insight into projec_ characteristics such 0 _O =s _ 40 !
as dates o£ releases being met. dates when source WEEKIFROmMRSTUIEOFOONIROLLEDS_RCtG_EUORA_f

code becomes stable, and periods when variou_ Fl_u_ 4. Growr k in Changes to Source Code
_zantities of code are added (or deleted) possibly

reflectizq _he addition of entirely reusable tom- tion, or modification made co a component. The

I ponents. Figure 3 depicts the w_skly history of Ads effort shove a change history _hat As verYsource code size for the two projects. Several similar in signature to the growth history (as

points are worth noting: would probably be ex]pected). There is no erratic

• Of _he total FCRTRAN code, 36 percent was deviation from week to week. The normalized

I reused from earlier projects. This code was added change history (changes divided by curren_ system
almost all at once very early in the coding phase, size) is shown in Figure 5. using different nor-

which is shown by _he very rapid growth early in malization factors: number of components (Fig-

the project. NO such rapid growth is _ted in the urn 5a) and source lines of code (Figure 5b).

_la projeCts where less c/um 2 percent of code was

• The Ads development shows an extremely ...

s_ooth build approach durinq _he coding phase.

This is noted in _e obvious step functions up

I through week 30. when r.he final release was pro- |pared, with a _rradual increase Co completion of _ 33

ooo=.,_, ,, ----
• The FOIrlIfAB pro_ect deleted over 15 _SL0C _ i I /- ENOOFCO0_

I between weeks 20 and 23. Two major functions that _ 2-qF | i [_Ot_ITTES7 *had been kept separate up through week 20 were _ '_ ,\ ,_..r_edin. a--nfunotio,by--_=.n .=.L I -_!J __,--.-'
,.--.cas.rY source code wan deleted. _..il. of o." _ • _,--H /'- V /"-"- -

i will be reported An future SEL studies. _ _t ___. 0 10 _ 3O 44 SO

Another parameter that occasionally leads to in- " WEB_F_Iq_'rU_OFCONTI_t.LEDSOURC_COOEUI_R_W

CeresCing comparisons As the history of changes _o Figure 5a. Growth in _s Nones/lend

i source code. Figure 4 shows the accumulated h T Number of Components
chan_es by w_ek tha_ wets made tO the source code,

where a change As defined as any addition, de!e-

110 . -- FORTRA_

-- . "-!----A
gO _k.A -" _ U_TTE_r O.OS_-

"_ fr mo,,..,._T

':_.._'.......................... , .; .. ,.., ,,.
0 _0 =0 _0 _0 m Wi_F_dF_TL_E_FC_iTltOLI.EDgO#RC_COOEIJOI_RY

I V_E_SF_O_FltSTUSEOFCONIl_LL_S0t_q_c0_EUaNtNY Fiq_re 5b. Growth in _s _OrmLlizedFIg_ZO 3. Growth tm Somrce Code by Source Lines of Code

I
4-7

I

Profiles of Errors Ourlna Develo_nt Reveal

Some Differences Em_een the FORTRAN and a_,

Z4LW_. A preliminary examination of errors re-

ported by the two development teams shows some

differences. When an error is made, necessitating

a code change, the progra_w,er completes a form

that associates the change with a requirements

error, design error, coding error, etc. The ida

team attributed 33 percent of its error correc-

tions to errors in design, versus only 2 percent

design errors for _.he FORTRAN team. Coding errors

were cited in 51 percent of the cases for Ads,

versus 88 percent for FORTRAN. A likely explana-

tlon is the FORTRAN team's reuse of • previous

design versus the Ads team's original design.

The data collected from _he Ads team indicates _he

degree to which ?.ha use of ida contributed to a

change or error. Ads was cited as a contributing

factor in 28 percent of _.he changes or errors.

Some of the features involved in _he changes or

errors were exception handling, tasking, and _.he

visibility control of procedures and names.

Software Mi,_ement Im_llcatlo--

Some management observations related to staffing

and management training are briefly discussed.

More ReDid Phase-ln of Staff Was Possible.

In the current FORTRAN-oriented development proc-

ess, additional staff are typically added during

the detailed design and coding phases. Additional

staff ware also added to _.he Ads team. The time

to phase in new staff such that they ware oriented

end productive was less with Ads than with FORTRAN.

The package specification clarified the visible

"contract" to provide services to other packages.

Naw staff ware able to implement package bodies

with some degree of confidence that they were not

adversely affecting their team members as long as

the "contract" was not violated. In this sense,

the package specification serves to bound the span

of influence of _r.he new team member.

Man_ers Must Be Trained in Ads Methodology.

The Ads team underwent extensive training in the

Ads language and its associated me_hodolcglee. By

using object-oriented design, the team naturally

developed new representations (object diagrams,

etc.) for characterizing design. At the scheduled

reviews, the team attempted to use the modified

representations, but reviewers had not been

trained in these representations. The overall

concepts of the ida design were therefore ex-

tremely difficult to portray to the untrained

software managers and led to numerous misunder-

standings and repeated explanations of terminology

and representations. Efforts will be made in the

future to define end generalize the components of

an object-oriented design.

Exlst£na Develo--_-t Standards and Guldellne_

May Be Ineosmatible With Ads Te_h--lo_v. The

management team originally attempted to adhere to

the set of development standards _5 that had been

designed to accommodate the classical waterfall,

functional decomposition process. Many of the

products defined as necessary for completion in

4-8

certain phases seemed misfits for r.he Ads team in

using object-oriented design. For example, design

reviews were arbitrarily set ("it's about time for

a review") without having good measures of whether

the team was really at some specific, definable

milestone. Guidelines on r.he form and content of

documents were FORTRAN-oriented: for example, to

include structure charts two levels from the top.

These development guidelines and standards will

require modification for object-oriented design.

Alr_ough it is premature to make a final judgment

of the viability of Ads based on one particular

study, it is possible to maka some general obser-

vations. Based on the experiences of _he team and

managers studying r.he ida experiment, ida has been

demonstrated to be a viable, usable technology

capable of supporting software development for at

least this one particular non-real-time applica-
tion.

Many uncertainties about ida must still be inves-

tigated, and its many immature features, such as

the general overall performance, must come of

age. Yet for environments similar to the one

studied, ida is available and is capable of sup-

porting the development of major production soft-

ware systems. Based on _he early results from

this experiment, NASA managers involved wi_.h the

study have concluded the following:

Ada can be used to support noncritical,

non-real-time projects for flight dynam-

ics mission support.

Additional studies using production-type

development efforts must be supported.

As of this writing, two additional major mission

support projects have been designated to be devel-

oped in Ads in the flight dynamics environment.

Through extensive data collection and close moni-

toring, these projects will also be used to per-

form more detailed analysis of the characteristics"

of Ads software development. Additional opera-

tional support systems now being designed for ida

are evidence of NASA's support for Ads technol-

ogy. It is realized that unless major development

projects are initiated immediately, the evolution

to an ida support environment for the Sgace Sta-

tion will be extremely difficult, if not impos-

sible.

None of the measures analyzed has indicated that

ida should not be used as the development lan-

guage, although the results indicate that caution,

patience, and managerial support are required in

applying the new technology. For this reason,

each new project within the GSFC flight dynamics

area is required to develop a contingency plan

describing how _.he project can be completed wi_,h-

ou_ complete dependency on Ads. Such a plan is

indicative of the extreme caution r.hat must be

used when coeu_itting to a new technology. Ads has

been successful for one particular experiment, for

one particular application, and in one particular

environment, but additional years of study will he

needed before the caution flag can be lifted.

I
I
!

!
I

I
I
I

I
I

I

I
I
I

I
I

I
I
i

I

I

I

I

I

I
I

I

l
I
I

I
I

I
I

I
I

I
i

!n addition t= the projact d&t& co..-_rarisons _ha_

are boinq analyzed, the followinqgenoral observa-

tions were made by the study team during the ex-

periment:

• There is a critical need to support addi-

tional Ads development project studies--During the

experiment, members of the study group aCtm_tod

to locate similar studieL in production environ-

ments so that results could he cQmpared and gen-

eral information exchanged. Because of the

unsuccessful attempts of the team to locate such

projects, there is great concern that too

speculstlou is being put into studies and planning

for ida applications without enoug1_ evidence based

on comparative studies or even general ida devel-

opment ef£orts.

• A_ performance is not a major issue in

the DZC environment studied for non-real-time

systems--One of the major objections to the Ads

lanqlaaqe is _ size and complexity of _ sys-

tems, which has resulted in general performance

questions. Although the eEL has net _ major

efforts to study Overall performance characteris-

tics, it was found that thm performance of the

support environment used in this study was ade-

quate to support development and operations for

these subject ground support systems. There was

not a significant de_adation of overall perform-

ance when compared to the usual FORTRAN systems.

• No measures Of concern indicated that Ads

cannot be successfully applied today--Al_houqh

analysis of this project and numerous o_sr ef-

forts will continue over the next months and even

years, the key measures of concern for this

study--cost, reliability, and maintainability (ef-

fort to chan_e/effort to repair)--have not indi-

cated that _ cannot support current projects.

Insight has been gained in oath of these factors

and, although none of these measures has show_

dramatic improvement for Ads, none has iudicated

either that _ is not ready for use.

• The unusually large size of the Ads prod-

uct is surprising, but somewhat explainable--ks

noted earlier in this paper, the completed Ads

product was three times as large (source lines) as

the FORTRAN version. This size differential was a

major surprise to the study team, but was driven

by three key facts:

The nature of the ida lanqunge (type

declarations, etc,) results in sore

source lines than FOEI:_Uf requires.

Major additional functionality was

built into portions of the Ads v_r-

zion in an attempt to make the sys-

tam better.

Because the pro_ect was not driven

by tight schedules and overly con-

strained pro_ect funds (as was the

FOBT2A_ version), there was a ten-

dency to continually add capability

to the Ads version.

• Claims of siquizicant productivity -:'_ns

with a first-time use of Ads are questionable--

This experiment made significant investments over

a 30-month period to gain insight into the impli-

cations of using Ads. Two key measures of inter-

est to all software engineers are productivity and

reliability. Despite the fact that this major

effort is probably one of the few of its kind, the

study group feels that no _ustifiable statements

can yet be made about productivity when using

Ads. Many unknowns and additional parameters have

complicated the effort to accurately determine

productivity differences. The timbers obtained

from studies within the SEL show _lat productivity

ranges from one-half to twice that of FOBTRA_. It

would be prmaturs to draw any conclusions o_her

that the overall cost of uziaq ida is not

prohibitive and is simila_ to that of developing

software in a more traditional fashion. Only by

conducting numerous additional studies and collect-

ing valid data from Ads development projects will

we be able to determine the ralative effact of Ada

on such a key factor as productivity.

The SEL project described here has led to a

greater understanding of both r.he Ads lanquaqe and

its associated development methodologies. This

one major study at NASA has provided invaluable

insight Autos technology that has the potential

to affect the entire software dev_lopment commun-

ity. In addition, it has provided extensive

trainin_ to a large group of software developers

and has raised the enthusiasm for Ads within _he

GSFC enviro_nt. _t has also, however, exposed

some major areas for caution.

In addition to the obvious concerns about train-

ing, performance, proper use of ida, and complex-

£ty, the experiences gained in this study have

resulted in a clearer projec:ion for the transi-

tion to an Ads developmen_ environment. Although

all study participants and managers concluded that

Ads is a most promising technology and is avail-

able now for some applications, the study team

(from NASA, CSC, and the University of Maryland)

also felt that the transition from a _ypical

FORTRAN environment to an Ads production environ-

ment will take much longer than originally esti-

mated, in fact, from 8 to I0 years.

This single study project has been active for over

2-1/2 years, with additional efforts beam; made in

training and planning for other projects. How-

ever, this particular software development envir-

onment is another 7 or 8 years away from being a

routine user of _a and not primarily "a FORTRAN

shop." This estimate is _ased on the time re-

_u_red to understand the various effects of /uia on

the current FO@T_Lk_ legacy by planning and con-

ducting more studies, training technical and

management personnel, and observing more Ads pro-

duction projects.

Despite the discouraging time estimates for the

transition to Ada, this study has reinforced the

optimism for ida's high potential, with such a

major effort required to evolve CO this improved

technology, additional s_dies mus_ be initiated

and supported.

4--9 "

REFZREHCES

1. A. Koare, "The Emperor's New Clothes,"

cations of the ACM, February 1981

2. T. Courtwright, "Ado Tools Update," Washington,

D.C., SIGAda Muting, September 18, 1985

3. W. Myers, "Ado: First Users - Pleased_ Pro-

sportive Users - Still'Hesitan_," Computer,

March 1987

4. V. 9asili at al., "Characterization of an Ado

Software Development," Q_, September 1985

5. Software Engiheering Laboratory, SEL-81-104,

The Software Enolneerina Laboratory, D. Card,

F. McGarry, G. Page, et al., February 1982

6. V. Basill and R. Selby, "Four Applications of

a Software Data Collection and Analysis Mech-

odolo_," Proceqdlnas of the NATO Advanced

Study Institute, August 1985

7. J. Bailey and V. Basilio "A Meta-Model for

Software Development Resource Expenditures,"

Proceedinas of the Fifth International Confer-

ante on Software Enaineerina, 1981

8. Software Engineering Laboratory, $EL-87-003,

Guidellnea for A_olvlna the Comoosite $oeclfi-

cation Model (CSM}, W. Agresti, June 1987

4-10

9.

10.

11.

12.

13.

14.

15.

G. Booths Software Enqinee_in_ With Ado.

Menlo Park, California: Benjamin/Couplings

Publishing Co., Sno., 1983

Software Engineering Laboratory, SEL-85-002,

Ado Trainina Evaluatlon and Recommendations,

R. Murphy and M. S_ark. October 1985

F. McGarry and R. Nelson, "An Experiment Wlth

Ado - The GRO Dynamics Simulator," NASA/GSFC,

April 1985

W. Aqresti et al.o "Designing wi_h ida for

Satellite Simulation," Procaedinas of the

First Annual SvTnnositun on Ado ADollcations for

the NASA Soars Station, Houston, Texas, June

1988

C, Bro_hy, W. Agrasti. and V. Basili, "Lessons

Learned in Use of Ado-Oriented Design Meth-

ods," Proceedinas of the Joint Ado Conference,

Arlington, Virginia, March 1987

Software Engineering Laboratory, SEL-87-004o

Assesain= the Ado Desian Process and Its

ImDlica_ions: A Case Study, S. Godfrey and

C. Brophy, July 1987

Salivate Engineering Laboratory, SEL-81-205,

Recommended Aooroach _O Software Development,

F. McGarry, G. Page, et al., April 1983

I
I
I

I
l

I
I
l

I
I

I
I

I
I

I
I
I

I
I

I

I

i

l
I

I
I
I

I
l
I

I
I
I

I

I
l
I

I

GENERAL OBJECT-ORIENTED SOFTWARE DEVELOPMENT: BACKGROUND AND EXPERIENCE

2lst Hawaii International Conference on System Sciences

January, 1988

Ed Seidewitz

Code 554 / Flight Dynamics Analysis Branch

Goddard Space Flight Center
Greenbelt MD 20771

(301) 286-7631

Abstract

The effective use of Aria tm requires the adoption of modern

software-engineering techniques such as object-oriented

methodologies. A Goddard Space Flight Center Software

Engineering Laboratory Ado pilot project has provided an

opportunity for studying object-oriented design in Ada. The

project involves the development of a simulation system in
Ado in parallel with a similar FORTRAN development. As

part of the project, the Ado development team trained and

evaluated object-oriented and process-oriented design

methodologies for Ada. Finding these methodologies limited
in various ways, the team created a general object-oriented

development methodology which they applied to the project.

This paper discusses some background on the developnlent of

the methodology, describes the main principles of the approach
and presents some experiences with using the methodology,

including a general comparison of the Ado and FORTRAN
simulator designs.

1. Introduction

Increased productivity and reliability from using Ada must

come from innovative application of the non-traditional
features of the language. However, past experience has shown

that traditional development methodologies result in Aria

systems that "look like a FORTRAN design" (see, for example,

[Basili 85]). Object-oriented techniques provide an alternative
approach to effective use of Ada. As the name indicates, the

primary modules of an object-oriented design are objects
rather than traditional functional procedures. Whereas a

procedure models an action, an object models some entity in
the problem domain, encapsulating both data about that entity

and operations on that data. Ada is especiai_ suited to this
type of design because its package facility dire_ly supports the

construction of objects.

Ado is a registered trademark of the US Government (AJPO)

PAMELA is a registered trademark of George W. Cherry.

The Goddard Space Flight Center Software Engineering

Laboratory is currently involved in an Ado pilot project to

develop a system of about 50,000 statements [Nelson g6]. This
project has provided an opportunity to explore object-oriented

software development methods for Ado. The pilot system,

known as "GRODY", is an attitude dynamics simulator for the

Gamma Ray Observatory (GRO) spacecraft and is based on the
same requirements as a FORTRAN system being developed in

parallel.

The GRODY team was initially trained both in the Ado

language and in Ado-oriented design methodologies. The team

specifically studied the methodology promoted by Grady
Booth [Booch 83] and the PAMELA tm methodology of George

Cherry [Cherry 85]. Following this, during a training exercise,

the team also began synthesizing a more general approach to
object-oriented design. At an early stage of the GRODY

development effort, the team produced high-level designs for

GRODY using each of these methodologies.

Section 2 summarizes the comparison of methodologies made

by the GRODY team. Section 3 then discusses in more detail

the methodology which was actually used to develop the full
GRODY design. Section 4 describes the resulting Ada design

and compares it to the traditional FORTRAN design. Finally,

section 5 provides some concluding lessons-learned and
recommendations.

2. Comparison of Methodologies

This section presents the comparison made by the GRODY

team of the Booch methodology, PAMELA and the general

methodology developed by the team itself. All these

methodologies address two basic questions: "How is the system

design represented?" and "How is the design derived from

requirements?"

2.1 Booch's Methodology

Grady Booch is, perhaps, the most influential advocate of

object-oriented design in the Ado community [Booth g6b,

Booch 87]. As learned by the GRODY team, Booth's
methodology derives a design from a textual specification or

informal design [Booth 83]. The technique is to underline all
the nouns and verbs in the specification. The objects-in the

4-11

design derive from the nouns; object operations derive from

the verbs. Obviously, some judgment must be used to

disregard irrelevant nouns and verbs and to translate the

remaining concepts into design objects. Once the objects have
been identified, the design can then be represented

diagrammatically using a notation which shows the

dependencies between Ada packages and tasks which

implement the objects.

The Booch design methodology contains all the basic

framework of the object-oriented approach, However,

application of this methodology to GRODY indicated that it

was not readily applicable to sizable systems, The team found

the graphical notation clear btlt not detailed or rigorous

enough, Further, Booch gives no explicit method for

diagramming a hierarchical decomposition of objects, which is

needed for any sizable system. Booch's notation does not,
therefore, seem to be a complete design notation. Note,

however, that in more recent work Bunch has extended the

scope of the notation to address some of these shortcomings

[Bunch 87].

A second difficulty of Booch's methodology is in the technique

for deriving the design from the specification text. This works
well when the specification can be written concisely in a few

paragraphs. However, when the system requirements are large,

.as with GRODY, this can be difficult. In addition, any

attempt to use such a technique directly on a requirements
document such as ours is doomed to failure due to the sheer

size and complexity of the document. Realizing such

drawbacks, Bunch no longer advocates the use of this textual

method, which was never actually intended for large systems

development [Bunch 86b]. Instead, he derives an object=
oriented design from a data flow diagram based specification

[Bunch 86a, Bunch 87]. However, from the published

examples it is still unclear how to systematically apply this
method to realistic systems.

2.2 PAMELA

The second methodology considered by the GRODY team was

the Process Abstraction Method for Embedded Large

Applications (PAMELA) developed by George Cherry

[Cherry 85, Cherry 86]. PAMELA is oriented toward real-
time and embedded systems. PAMELA is process-oriented, so

a PAMELA design consists of a set of interacting concurrem

processes. A well designed process is effectively a concurrent

object, thus PAMELA is object-oriented in a general way.

PAMELA uses a powerful graphical notation without the

drawbacks found in Booch's notation [Cherry 86]. During the
PAMELA design processes, the designer successively

decomposes processes into concurrent subprocesses until he
reaches the level of primitive single-thread processes. The

GRODY team found that PAMELA provides fairly explicit
heuristics for constructing gOod processes. The designer uses

these hints to construct the top-level processes from the system

specification. The designer then recursively decomposes each

non-primitive processes until only primitive processes remain.

The primitive processes can then be coded as Ada tasks with a

single thread of control. Non-primitive processes are simply

packages of lower level processes and thus contain multiple

threads of control.

PAMELA's heuristics can be very effective when designing a

real-time system that is heavily driven by external

asynchronous actions. In other cases, however, they require

considerable interpretation to be applicable. Although parts of

GRODY might conceptually be concurrent (because GRODY
simulates actions that happen in parallel in the real world),

there is no requirement for concurrency in the simulation of
these actions because GRODY does not have to interface with

any active external entity (except the user). In addition, since
GRODY runs on a sequential machine, the overhead of Ada

tasking and rendezvous could greatly degrade the time
performance of the system. Thus, one interpretation of

PAMELA's principles might leave very large sections of

GRODY as primitive single-thread processes, with only a few

concurrent objects in the entire design. To proceed further in
the decomposition, the designer has to rely moreon intuition

about what makes a good object and .rely less on the
methodology. In fact, at the time that the GRODY team was

using PAMELA, it provided no support for the decomposition

and design of anything below the level of the primitive

process, an Ada task [Cherry 85]. Since then, Cherry has

added several concepts to the methodology, including the use

of abstract data types [Cherry 86]. However, the methodology
remains weak for systems with a small amount of concurrency

which are still to be designed in an object-oriented fashion.

2.3 General Obiect-Oriented DevelonmenI

AS a result of the above experiences, the GRODY team

developed its own object-oriented methodology which attempts

to capture the best points of the object-oriented approaches
studied by the team as well as traditional structured

methodologies [Seidewitz 86a, Seidewitz 87b, Stark 87]. It is

designed to be quite general, giving the designer the flexibility

to explore design alternatives easily. It is also based on

principles that guide the designer in constructing good object-
oriented designs. This methodology was used to develop the

complete detailed design for GRODY.

This general object-oriented development ('GOOD")

methodology is based on general principles of abstraction,
information hiding and design hierarchy discussed in the next

section. These principles are less explicit than Booch's

methodology or PAMELA, but they do provide a firm

paradigm for generating and evaluating an object-oriented

design. Indeed, as mentioned above, the team found the Bunch
and PAMELA design construction techniques restrictive, often

necessitating the designer to rely on intuition for object-

oriented design. The GOOD methodology is an attempt to

codify this intuition into a basic set of principles that provide

guidance while leaving the designer the flexibility to explore

various design approaches.

In addition, we have also considered, independently of Bunch,

the transition from structured analysis [DeMarco 79] to object-

oriented design in the context of the GOOD methodology,

4-12

I

I

I

l
I

I
I
I

I
I

I

I
I
I

I
I
I

I
I

I

I

l

l

I

I

I

I

I

I

I

I

I

I

I

I

I

I

|

developing a technique known as abstraction analysis

[Seidewitz g6a, Seidewitz 86b], This technique isanalogous to

transform and transaction anal_ls used in structured design

[Yourdon 78]. However, pr_Iceeding into object-oriented

design from a suucrur_d analysis, by whatever means, requires

an "extraction" of problem domain entities from traditional

data flow diagrams. From an object-oriented viewpoint, it

seems appropriate to instead begin a specification effort by
identifying the entities in a problem domain and their

interrelationships. Study is continuing on including such

object-oriented system specification techniques in the GOOD
methodology and on applying object-oriented principles

throughout the Ada life cycle [Stark 87].

3. The GOOD Methodology

As a result of the comparison discussed in section 2, the

GRODY team decided to apply the GOOD methodology to the

full GRODY design. This section provides an overview of the

principles and notation used during the GRODY design.

3.1 Desi=ning with Obiects

The intent of an object is to represent a problem domain

entity. The concept of abstraction deals with how an object

presents this representation to other objects [Booch 86b,
Dijkstra 68]. Ideally, the objects in a design should directly

reflect the problem domain entities identified during system

specification. However, various design considerations may
require splitting or grouping of objects and there will almost

always be additional objects in a design to handle "executive"
and "utility" functions. Thus there is a spectrum of levels of

abstraction of objects in a design, from objects which closely

model problem domain entities to objects which really have no

reason for existence [Seidewitz 86b]. The following are some

points in this scale, from strongest to weakesu

Entity Abstraction - An object represents a useful model of a

problem domain entity or class of entities.

Action Abstraction - An object provides a generalized set of
operations which all perform similar or related functions (this

is similar to the idea of a "utility" object in [Booch 87]).

Subsystem Abstraction - An object groups together a set of
objects and operations which are all related to a specific part

of a larger system (this is similar to the *subsystem" concept in

[Booth 87]).

The stronger the abstraction of an object, the more details are

suppressed by the abstract concept. The principle of

in/ormation hiding states that such details should be kept secret

from other objects [Booch 87, Parnas 79], so as to better

preserve the abstraction modeled by the object.

The principles of abstraction and information hiding provide

the main guides for creating "good" objects. These objects

must then be connected together to form an object-oriented

design. This design is represented using a graphical object

diagram notation [Seidewitz 86b]. Similarly to Booch's

4-13

notation, object diagrams show ;control flow and module

dependencies between objects. However, they can be

hierarchically leveled as with PAMELA's process graphs.

_.2Design Hierarchies

The construction of an object-diagram-based design is

mediated by consideration of two orthogonal hierarchies in

software system designs [Rajlich 85]. The composition

hierarchy deals with the composition of larger objects from

smaller component objects. The seniority hierarchy deals with
the organization of a set of objects into "layers'. Each layer

defines a virtual machine which provides services to senior

layers [Dijkstra 68]. A major strength of object diagrams is

that they can distinctly represent these hierarchies.

The composition hierarchy is directly expressed by leveling
object diagrams (see figure 1). At its top level, any complete

system may be represented by a single object which interacts

with external objects. Beginning at this system level, each

object can then be refined into component objects on a lower-

level object diagram, designed to meet the specification for the

object. The result is a leveled set of object diagrams which

completely describe the structure of a system. At the lowest
level, objects are completely decomposed into primitive

objects such as procedures and internal state data stores. At

higher levels, object diagram leveling can be used in a manner

similar to Booch's "subsystems" [Booch 87].

c

FIGURE 1 Composition Hierarchy !

The seniority hierarchy is expressed by the topology of

connections on a single object diagram (see figure 2). An

arrow between objects indicates that one object calls one or

more of the operations provided by another object. Arty layer
in a seniority hierarchy can call on any operation in junior

layers, but never any operation in a senior layer. Tfius, all

9

cyclic relationships between objects must be contained within

a virtual machine layer. Object diagrams are drawn with the

seniority hierarchy shown vertically. Each senior object can be

designed as if the operations prgvided by junior layers were
"primitive operations" in an extended language. Each virtual

machine layer will generally contain several objects, each

designed according to the principles of abstraction and
I information hiding.

......

....... E 2

FIGURE 2 Seniority Hierarchy

3.3 Desitnin_, Svstem_

The main advantage of a seniority hierarchy is that it reduces

the coupling between objects. This is because all objects in one

virtual machine layer need to know nothing about senior

layers. Further, the centralization of the procedural and data

flow control in senior objects can make a system easier to
understand and modify.

However, this very centralization can cause a messy bottleneck.

In such cases, the complexity of senior levels can be traded off
against the coupling of junior levels. The important point is

that the strength of the seniority hierarchy in a design can be

chosen from a spectrum of possibilities, with the best design

generally lying between the extremes. This gives the designer

great power and flexibility in adapting system designs to
specific applications.

For example, consider a simplified attitude dynamics
simulation system similar to GRODY. The attitude of a

spacecraft is its orientation relative to inertial space, and an
attitude dynamics simulator models the rotational motion of

the spacecraft in response to external disturbances and the

spacecraft control system. The problem domain for such a

system includes the external environment, thrusters to control

the spacecraft, sensors to determine the current attitude, etc.

I

I

These entities interact with the spacecraft control system in a I
control loop outlined in figure 3.

',,,
°'::=£ " I

Figure the m

and

the arrow I
system. In
sometimes

control arrows,

[Yourdon 781 or "Buhr will Inot appear on the final object

I_RUSTER

TORQUE

"° |

LEG_

OATA PLOW

C _TR_. FLOW

FIGURE 4 Centralized Design

4-14

I
I

I
I

I
I
I

I
!
I

l

I
i
i

I

I
I
i

i

• I

In figure 4, the junior level components do not interact

directly. All data flow between junior level objects must pass

through the senior object, though each object still receives and

produces all necessary data (for simplicity not all data flow is

shown in figure 4). This desigfi is somewhat like an object-

oriented version of the structured designs of Yourdon and

Constantine [Yourdon 78].

We can remove the data flow control from the senior object

and let the junior objects pass data directly between

themselves, using operations within the virtual machine layer

(see figure 5). The senior object has been reduced to simply
activating various operations in the virtual machine layer, with

very little data flow.

INMULAllON

¢ONlllm. II

FIGURE 5 Design with Decentralized Data Flow

We can even remove the senior object completely by

distributing control among the junior level objects (see figure

6). The splitting of the RUN control arrow in figure 6 means
that the three objects are activated simultaneously and that

they run concurrently. The seniority hierarchy has collapsed,

leaving a homologous or non-hierarchical design [Yourdon 78]

(no seniority hierarchy, that is; the composition hierarchy still
remains)

A design which is decentralized like figure 6 at all

composition levels is very similar to what would be produced

by the PAMELA methodology [Cherry 86]. In fact, it should
be possible to apply PAMELA design criteria to the upper

levels of an object diagram based design of a highly

concurrent system. All concurrent objects would then be

composed, at a certain level, of objects representing certain
process "idioms" [Cherry 86]. Below this level concurrency

would generally no longer be advantageous.

To complete the design, we need to add a virtual machine

layer of utility objects which preserve the level of abstraction

4-15

of the problem domain entities. In the case of the ATTITUDE

SIMULATOR these objects might include VECTOR,

MATRIX, GROUND COMMAND and simulation

PARAMETER types. Figure 7 shows how these objects might

be added to the simulator design of Figure d.

IITATI[DATA

I'- ISTATE _

FIGURE 6 Decentralized Design

Figure 7 gives one complete level of the design of the

ATTITUDE SIMULATOR. Note that figure 7 does not include

the data flow arrows used in earlier figures. When there are

several control paths on a complicated object diagram, it
rapidly becomes cumbersome to show data flows. Instead,

object descriptions for each object on a diagram provide
details of the data flow,

S_ULAT_Ot4
CO_TNOL

IIIACI[cIqAFI*

c__
FIGURE 7 Attitude Dynamics Simulator Design

An object description includes a list of all operations provided

by an object and, for each arrow leaving the objeci, a list of

operations used from another object. We can identify the
operations provided and used by each object in terms of the

specified data flow and the designed control flow. The object

description can be produced by matching data flows to

operations. For example, the description for the ATTITUDE

DYNAMICS object in figure 7 might be:

Provides:

procedure Initialize; .

procedure Integrate (For_Duration: in DURATION);

procedure Apply (Torque: in VECTOR);

function CurrentAttitude return ATTITUDE;
function CurrentAngular_Velocity
return VECTOR;

Uses:

5.0 LINEAR ALGEBRA

Add (Vector)
Dot

Multiply (Scalar)
Multiply (Matrix)

6.0 PARAMETER DATABASE

Get

We could next proceed to refine the objects u_ed in figure 7

and recursively construct lower level object diagrams. These
lower level designs must meet the functionality of the system

specification and provide the operations listed in the object

description. The design process continues recursively until the

entire system is designed and all objects are completely
decomposed.

S TORQUE

EN_RONMENT

sus_oc.a_ f"-']
llrAnE OATA r_i

°_¢TRO¢. FLOW

INSTANTIAT10N |t-

FIGURE 8 Attitude Dynamics Object Composition

For example, figure g shows the composition of the

ATTITUDE DYNAMICS object. The component object

ATTITUDE INTEGRATORis the instantiation of a generic

INTEGRATOR object which takes the function to be

integrated as a generic parameter. The generic object is

instantiated in figure 8 with the ATTITUDE EQUATION

subprogram as the generic actual parameter. Most of the
ATTITUDE DYNAMICS operations are shown in figure 8 as

component procedures, represented by rectangles. The

"Integrate" operation, however, is directly inherited from the

ATTITUDE INTEGRATOR object.

3.4 Implementation

The transition from an object diagram to Ada is

straightforward. Package,specifications are derived from the
list of operations provided by an object. For the ATTITUDE

DYNAMICS object the package specification is:

package AttitudeDynamics is

subtype ATTITUDE is Linear Algebra.MATRIX;

procedure Initialize;

procedure Integrate

(For Duration : in DURATION);
procedure Apply

(Torque:in Linear Algebra.VECTOR);

function Current Attitude

return ATTITU'-D E;

function Current--Angular Velocity

return Linear Algebra.VECTOR;

end Dynamics;

The package specifications derived from the top level object
diagram can either be made library units or placed in the

declarative part of the top level Ada procedure. For lower
level object diagrams the mapping is similar, with component

package specifications being nested in the package body of the

composite object. States are mapped into package body

variables. This direct mapping produces a highly nested

program structure. Alternatively, some or all of these

packages can be made library units or even reused from an

existing library. However, this may require additional packages
to contain data types and state variables used by two or more

library units.

The process of transforming object diagrams to Ada is
followed down all the object diagram levels until we reach the

level of implementing individual subprograms. Low=level

subprograms can be designed and implemented using

traditional functional techniques. They should generally be

coded as subunits, rather than being embedded in package
bodies.

As mentioned in subsection 3.3, Attitude Dynamics inherits
its "Integrate" operation from a component object. Smalltalk's

subclassing [Goldberg 83] provides an elegant means of

4-16

I
I
I

I
I

I
I
I

I
I

I

I
I
I

I
I

I
I
I

I

!

!

!

i

I

I

I

!

l

I

l
I
I

I
I

I
i

!

supportina inheritance. Ada does .,tot directly support
inheritance, but the concept can be simulated by using "call-

throughs," A call-through is a subprogram that has little

function other than to call on Inother package's subprogram.

To simulate inheritance when implementing the

Attitude_Dynamics package the subprogram Integrate would

be respecified in the Attitude_Dynamics package, with the

subprogram body in AttitudeDynamics calling on the
corresponding operation from Attitudelntegrator.

This technique is clearly less elegant than Smalltalk
subclassing, but it also has advantages. First, Ada allows

inheritance from more than one object. Second, Smalltalk

forces the inheritance of a/l operations and data. An operation

can be overridden, but not removed, from a class. The Ada

specification of the composite package gives the developer
precise control over which operations and data items are

visible or accessible. (See [Seidewitz 87] for a more detailed

discussion of Ada and the concept of inheritance.)

The clear definition of abstract interfaces in an object-
oriented design can also greatly simplify testing. When testing

an object, there is a well defined "virtual machine" of

operations it requires from objects at a junior level of
abstraction, some of which may be stubbed-out for initial

testing. Further, object-oriented composition encourages

incremental integration testing, since the "unit testing" of a
composite object really consists of "integration testing" the

component objects at a lower level of abstraction.

4. Application to GRODY

As part of the GRODY project, a detailed assessment has been

made of the team's experiences during design [Godfrey 87]. At
this time, however, most of the observations must remain

qualitative. Nevertheless, it is clear that the GRODY design is
significantly different from previous FORTRAN simulator

designs [Agresti 86].

SIMULATION

CONTROL

FIGURE 9 FORTRAN Simulator Design

4-17

4.i Desinn Comoarison

The design of the FORTRAN simulator has a strong heritage

in previous simulator and ground support system designs. It

consists of three major subsystems which interact as shown in
figure 9. The "TRUTH MODEL* subsystem includes models of

the spacecraft hardware, the external environment and the

attitude dynamics; that is, the "real world" as opposed to the

spacecraft control system. The SIMULATION CONTROL

subsystem alternatively activates the SPACECRAFT

CONTROL and TRUTH MODEL subsystems in a cyclic

fashion. Data flow between subsystems, as well as system

parameterization, is entirely though a set of global COMMON
areas.

Since GRODY was derived from the same basic requirements

as the FORTRAN design, there are similarities in the designs

of the two systems. However, there are also some fundamental
differences in the GRODY design that can be traced to the

object- oriented methodology. Figure 10 is an object diagram

of the main part of the GRODY design. This design is similar

to the example design of figure 7. However, the GRODY team
chose to combine the ATTITUDE DYNAMICS and

SPACECRAFT HARDWARE objects into a single TRUTH

MODEL object, similar to the corresponding subsystem in the
FORTRAN design. Further, in GRODY the LINEAR

ALGEBRA functions are part of a UTILITIES module not
shown in figure 10.

SlidULATION

CONTROL

DATABASE

FIGURE 10 Ada Simulator Design

Unlike the FORTRAN design, consideration of the seniority

hierarchy in the GRODY design led the GRODY team m place

the TRUTH MODEL at a level junior to the SPACECRAFT
CONTROL. The TRUTH MODEL is thus effectively pessive,

with the SPACECRAFT CONTROL calling on operations as ---

needed to obtain sensor data and activate actuators. All sensor

and command data is passed using these operations.

Thesimulation timing of GRODY is also different from the

FORTRAN design. The object-oriented methodology led to

consideration of a "TIMER" object in GRODY which provides
an abstraction of the simulati6n time. This utility object

provides a common time reference for the SPACECRAFT
CONTROL and TRUTH MODEL separate from the

SIMULATION CONTROL loop. Unlike the FORTRAN

design, in GRODY the "cycle times" of the SPACECRAFT

CONTROL and TRUTH MODEL are not the same. The

GRODY team chose to faithfully model, in the SPACECRAFT
CONTROL abstraction, the timing of the actual spacecraft

control software, which is not under user control. However,
GRODY allows the simulation user to set the cycle time for

the TRUTH MODEL over a fairly wide range, to allow the

user to trade-off speed and accuracy as desired.

Finally, the PARAMETER DATABASE and GROUND
COMMAND DATABASE objects encapsulate user settable

parameters for the simulation. Similar data is contained in

COMMON blocks in the FORTRAN design. This
encapsulation of "global" data is typical of object-oriented

designs. It provides both increased protection of the data

encapsulated and increased opportunity for reuse. For example,

the simulation parameters in the FORTRAN design are

COMMON block parameters which must be hard-coded into
the user interface code. (For simplicity the user interface

modules have not been included in the design diagrams here.)

In the GRODY design, simulation parameters are identified by

enumeration constants, which allows the user interface displays

to be parameterized by external data files. This should greatly

increase the reusability of the user interface.

4.2 Experience with the Methodolotv

The differences discussed above could probably have been
incorporated into the FORTRAN design. However, it was

largely the influence of the object-oriented approach which

lead to their consideration for GRODY when they had not

been considered in several previous designs of simulators for

FORTRAN. Considerations of encapsulation and reusability
indicate that the GRODY design may be "better" than the

FORTRAN design. This is, of course, the goal of object-
oriented methods. However, the true test of the merits of the

GRODY design will only come from continuing studies of the
comparative maintainability of the FORTRAN and Ada
simulators.

In terms of the methodology itself, the team found the object

diagram notation extremely useful for discussing the design
during development. Further, the notation provided complete

documentation of the design and was tailored specifically

towards Aria. This made the transition to coding very smooth,

and allowed the documentation to be readily updated as coding

proceeded. By the end of coding, there were no major changes
in the design and most changes that did occur were additions
rather than alterations.

The object diagram notation evolved considerably during the

GRODY project in response to continuing experience with its

4-18

use. The lack of a specific methodology at the start of the

GRODY project was a problem for the team, as was the

continuing evolution of the methodology over the duration of

the project. Further, the fact that managers were not familiar
with the new methodology made the use of object diagrams

difficult at reviews. Another problem was that the detail of

the object diagrams and the emphasis on keeping the

documentation up-to-date required a lot of effort for

maintaining a rather large design notebook. The team clearly

saw the great need for automated tools to support the

methodology in this area. Consideration is also being given on
how to extend the object diagram notation to better cover such

topics as generics, abstract data types and large system

components.

5. Conclusion

The GRODY project has provided an extremely valuable

experience in the application of object-oriented principles to a
real system. This experience guided the creation of the GOOD

methodology which is now being used on an increasing number

of projects inside and outside of the Goddard Space Flight

Center. As with any pilot project, some of the major products
of GRODY are the lessons learned along the way. Some

specific points on the methodology used in GRODY are

[Godfrey 87]:

- The design methodology should be chosen as early as possible
so that the team can be trained in this methodology and so that

time will not be wasted trying to use an unsuitable
methodology.

- The methodology chosen must exploit important Ada

features such as packages, tasks and generics.

- Object diagrams were a very suitable representation for the

GRODY design.

- The GOOD methodology seems to be an extremely useful

method for system design.

Compilable design elements developed in Ada are very
useful for providing validation of the design as well as for
documentation.

It also became clear during the GRODY project that the

GOOD methodology does not fit comfortably into the
traditional life cycle management model. At the very least, the

design phase should be extended and design reviews should

occur at different points in the life cycle. The preliminary

design review should occur later in the design phase and
should include detailed object diagrams for the upper levels of

the system, perhaps down to the level at which the design

becomes more procedural than object-oriented. The critical

design review would then include the detailed procedural

designs, perhaps using an Aria-based design language. This

review might actually take place as a series of incremental
reviews of different portions of the design. This later approach

is supported by the well-defined modularity of an object-

oriented design.

I
I

I
I

I
I
I

I
I

I
I

I
I
I

I
I

I
I

I

l
l

l

!
I
I
I

!
l

I
l

I

I
l
I

I
I

I
!

Th.e t_,__di_onz-! func¢ion_ vie-._int provides ; compreher_ive

framework for the entire software llfe-cycle. This viewpoint
reflects the Iction-oriented nlmre of the machines on which

software is run. The object-oueoted viewpoint, however,
reflects the natural structure of the problem domain rather

than the implicit structure of our hardware. Thus, it provides a

"higher-level" approach to software development which

decreases the disaLuCe between problem domain and software

solution. By making complex software easier to understand,

this simplifies both system development and maintenance. Our

experience with GRODY forms the basis for fruitfully
applying this approach to future Ada projects.

References

[Agresti 86]

Agresti, William W., et. al. "Designing with. Ada for Satellite

Simulation: a Case Study," Pr_eeclings of the Ist International

Conference on Ada Anvlications for the Space St_iQn, June
1986.

[Basili 85]
Basili, V. R., et. al. "Characterization of an Ada Software

Development," Computer, September 1985.

[Booth 83]

Booth, Grady. Software Engineering with Ada,
Benjamin/Cummings, 1983.

[Boech 86a]

Boech, Grady. "Object-Oriented Software Development," IEEE
Transactions on Software EnRhlffrine, February 1986.

[epoch 86b]

Boech, Grady. Software EnRineering with Ada. 2nd Edition,
Benjamin/Cummings, 1986.

[Beech 87]

Booth, Grady. Software Comooptrl|$ with Ada,
Benjamin/Cummings, 1987.

[Buhr 84]

Buhr, R. J. A. System De]Jgn with Ada, Prentice-Hall, 1984.

[Cherry 85]

Cherry, George W. PAMELA Course Notes, Thought**Tools,
1985.

[Cherry 86]

Cherry, George W. PAMELA DesiRner's Handbook,
Thought**Tools, 1986.

[Dijkstra 68]

Dijkstra, Edsgar W. "The Structure of the 'THE'

Multiprogramming System," Communications of the ACM,
May 1968.

4-19

[Godfrey 87]

Godfrey, Sara, Carolyn Brophy, et. al. Assessing the _tda
Design Process and its Imnlications: a Case Study, GSFC

Document SEL-87-004, July 1987.

[Goldberg 83]
Goidberg, Adele and David Robson. Smalltalk-80: The

Language and Its lmnlementation, Addison-Wesley, 1983.

[Nelson 86]
Nelson, Robert W. "NASA Ada Experiment -- Attitude

Dynamic Simulator," Proceedin_ of the WashinRton Ada
Symposium. March 1986.

[Parnas 72]
Parnas, David L. "On the Criteria to be Used in Decomposing

Systems into Modules," Communications of the ACM,
December, 1972.

[Rajlich 85]

Rajlich, Vaclav. "Paradigms for Design and Implementation in

Ada," Communications of the ACM, July 1985.

[Seidewitz 86a]

Seidewitz, Ed and Mike Stark. "Towards a General Object-

Oriented Software Development Methodology." Proceedints of

the Ist International Conference on Ada Aonlica_ions for the
Space Station, June 1986.

[Seidewitz 86b]
Seidewitz, Ed and Mike Stark. General Oblect-Oriented

Software Develonment GSFC Document SEL-86-002, August
1986.

[seidewitz 87]

Seidewitz, Ed. "Object-Oriented Programming in Smalltalk and

Ada', ProceedinRs of the Conference on Obiect-Orient¢_

Programming. Languages. Systems and A_l_li_ations, October
1987.

[Stark 87]

Stark, Mike and Ed Seidewitz. "Towards a General Object-

Oriented Ada Lifecycle," Proc. of the Joint Conference on Adl
TechnoloRv / WashinRton Ada Svmoosium, March 1986.

[Yourdon 78]

Yourdon, Edward and Larry L. Constantine.

Design: Fundamentals of a Discioline of Comouter Program

and Systems Design, Yourdon Press, 1978.

TOWARDS A GENERAl, OBJECT-ORIENTED ADA LIFtrCYCLE

Mike Stark / Code 5S2

Ed Seidewitz / Code $54

Goddard Sp_e Flight Center

Zdnzxlgt

la _ tot'tware en&ie_ering, the
software developer atum_u to model endtiu in the
problem domain _ how Shay interoct. Our previous
work. which Ipr_w out of s Goddard ,S_4ce Flicht Center
Softwzro Enlineerin8 Laboratory Ads (tin) pilot project.
has concentrated oat usiel object-¢_rlented idcas in

softwlt_ desilJn luscl implementation. However, we
have also found that object-Orlented concepts can be

-used edvutaacously throulhout the entire Ado
soft'wt_ llfe-cycM. Tim paper provides t distillation of
our experienc_ with object-oriented software

development. It con-iderl the use of entity-relatlonship
and object dato-now techniques for xn object-oriented

tpecil'tcatioo which kutds smoothly into Our design tad
implementation methods u welt u an object-oriented
approach to reusability in Adz.

Greenbelt MD 20?7 I

Mtroh, 198"7

desiped the system to meet this s0ecif'_tlon, using
object-oriented principles. The resultin8 desigu is, we

belleve.,pn improvement over the previous FORTRAN
destine." The system should be coded and tested by
the summer of 198";.

Previous work by the present authors hes

concentrated on usinl obje_--orientad ideas ia toftw*re
desian and implementation. This work multed in 8

design method which syntheslzelh[h_.best methods
studied durin8 the pilot proje4:L 6"_'4 Howover, we have
fouod thee obJect-orieoted coooepts tin be used
edveeta|cously throulhout the entire Acle software life-

cycle. This I_tl_r provides t distillation of our
experience with the pilot project t_[other Ads projects
into an evolving life-cycle methodoloay in continuing
use st _¢idard.

Sneelfleaflon

Introduction

The CK)ddard S06ce I_iaht Center Software
Enalneeri_l LAbofttocy is currently involved in 8n Ada

(tin) pilot p/_ject to cleveiop • eyst-'m of about 30.000
statemenCL 'e "This project has provided both
experience in using Ado and acted us a testbed for new
Ache-oriented softwue development methods. The
system, a Satellite attitude dymtmk:s simulator is based

on the same t_u_meaU is • _ORTRAN system being
developed in parallel

Increased productivity end reliability from using
Ads must come from inmvetive application of the non-

traditional feature of the lana_tge. However, past
experience has shown that traditional development
methedoto$ies mutt in Ads systems that "look like
FORTRAN design" (see, for example, Busili, et. el.S).
Therefore, for the pilot project we decided to begin with

the system requlroments and redesign the system,
explorin 8 new desian stmutaies.

Unfortuaetaly, the system requirements given to

our team were hisMy bhaed by PUt FORTRAN designs
and implemeetotiOU of similar systems. Therefore we
began by recnstin 8 the requirements ina more

lan8uage-indep4oden| way using the "Composite
SoecificalioO Model'." This method involves the use of
state transition end entlty-relationship techniques
well es more traditional data fl0w d_terams. We then

Ado is a trademark of the US Government (Ado Joint
Program Office)

The modules of an object-oricoted design are
iuteucted to primarily repr_ent problem domain _,
not just functions. Therefore, procoedin8 into object-

oriented design from a structured analysis requires an

"extortion" of probate 41plpJtin entities from traditional
Cleta flow dlaarems. _,u''_'' From an object--oriented
viewpoint, it seems appropriate to instoad betln 8
specification effort by identifying the entities in a
problem domain sod their interrolationshi_. Entity-

relationships end data flow techniques can then
complement each other, the former dellne_ting the
static structure problem domain and the letter defining

the dyasml¢ function of 8 system. This is similar to the

"contexttml- and "functional" views ore the Composite
Specification Model. '

Entities and gelationshins

An entity is some individual item of interest in the

problem domain. For example, consider the
apecif'gation of s system to simulate the dynami_ of a
sgxtr.ecraft in Earth orbit. Several problem domain
entities immediately come to mind: the stutcecraft,
Earth, thrusters on the spacecraft, etc. An entity is
ibod in terms of the relationsh into which it
entar8 other objects. A spacecraft might be in t certain
orbit state, have certain thrusters, etc. Entitles can also

have _. such 8s spacecraft mass, whK:h are
effectively simple relationships with standard data
items.

The foltOwing is an example of the possible
relationships into which "spacecraft entities" might
entel_.

4-20

I

I
I

I
I

I
I

I

I
I

I
I

l
I
I

I
I

I
I

!
Parameters SPACECRAFT PARAMETERS

State ORBIT STATE

Thrusters (THRUS'fER }

I Computer ON-BOARD COMPUTERORBIT STATE

Position INERTIAL VECTOR

Velocity iNERTIAL VECTOR

Parameters THRLP_R PARAMETERS

Firing BOOLEAN

i ON-BOARD COMPLr_ER
Uses { OBC DATA VALUE]

This indicates, for im;tnace, that the "state" of a

spacecraft is aa "orbit slaW" which has a *p_itioa" and

t a "velocity'. Curly briskets indicate a relationship with
"zero or more" of the bracketed entity.

The entity-relationship dialram (ERD) is I .

common lrapltical tOOl fog entity-orlented specification?

i Fisura I shows an ERD for the above entities. The
notation for this dlqruu is from Martin nod McClu_. 14

This dialnu= shows only a small pert of the example

problem domain. It would grow as additional entities

end relationships are added to describe additional

i palls of the problem domain As the specification
grows, a complete ERD _ quickly become

cumbersome. Therefore n teated "entity dictionary"

seem to be mast useful ns the primary entity

specification, with ERD notation hein I e graphical way

i to nutp pare of it.

HI "" &

I
I

I
i

NP
vec

Le_

"--'l"
O(q,-_N'gtq.MAN'¢

-I

FIGURE 1 Orbit Simulator Entity-Relationship

Olegmm

The Itonts of system tt_cificatino are actually

quite similar to the lain of knowledge _tetion

work in artificial intellileece. Therefore it is not

surprising that there ere similarities in technkluel.

Entity-relationship dialgreq_ ate basically the same ns

"laemantio networks" in Ai.'' and the ¢i_tity dictionary is
similar to the AI conceps o(a "frame'.' These and

other AI knowledlle reOresentation techniques may be

intreasinllly appllcable for complicated syswm

specirtcttine. This also sullests the intriluiall

poulbility od" dov¢iooin81 sophisticated "lOeclficatinn

imisg_t" system which din_tly "understeads" entity

reiatloaship spocif'tcatloos.

Object Dam-flow Dlam-mms

ERDI show •11 no_ible reletionsh_ between

different types of entities. They do ant tbow the aetuat

relationships between specific entities It sl_cifi¢ points

in time, nor how these •ctual relationships change Over

time. l_ta flow techniques, however, provide exactly

this'dynamic view. Traditional dnta flow dialgrems

(DFDs) show the flow of data between f•nctional

processes. We will. instead, diagram the flow of data

between obi_ts which repre_nt specific Ixtrts of the

problem domain. This results in

diatoms (ODDs) for the dynamic view of the

specification.

For the specification phase, objects are not

meant to be ioftwure modules, but to represent the

dynamic view of qua or more entities in the problem

domain. A _ification object is effectively a state

machino which ecceote inpm date, processes it and

produces ou_ data, possibly mod_yinl t0me internal

state data. it has no "operetloas" as such, quay date

flowinl in ,,,,4 out. In ttt_ ways ODDs •re similar to
Buhr's "cloud diagrams',' though ODDs ere oriented

towurds speciflcotinn rather slum design.

To construct an ODD speclfkattioo, one needs to

identify the main entities involved in dynamic processes.

lo the aute of the orbit simulator example, the f_nction

is to •pdate the spacecraft state in response to

environmental forces and thruster firings •rider control

of the on-board comp•ter. We thus specify a

DYNAMICS object to represent the physics of motion of

the spacecroft, it THRUSTER SIMUbA.TOR object to

represent the firing of thrusters and an OBC

EMULATOR object to emulate the oDeretiott of the pu-

b<regal comp•ter.

Filure 2 shows the data flow between these

three ob_tl. Note that each datum nowin8 on an ODD

is itself an entity. The entity dictionary can thus

completely replace the traditional data dictionary.

Some of these entities, such as "thruster status" and

"OBC telemetry', may actually not be identified •ntil the

dynamic view is considered. Thus the entity dictionary

will most likely continue to grow and he refined is the

ODD specification is constructed.

An ODD specification must include s detailed

specification for each object which appears on an ODD

An object specification provides • statement of the

problem domain abstraction represented by an object.

It should include t textual de_=ription of the object as

well is s listing o(all inputs lind outputs. The object

specification also provides u place to include "non-

I
4-21

? ? ?

o_._ t s_a_caA,T I I
star• I pan-..¢r•me I I

.----o j
I I _rrI_ I"..... q o------_l'="_'"_l

T ,,,Tun ?
0111111' OIC
ITAT! TTUJ[MITIRT

OATA FLOW

FIGURE 2 Orbit Simulator Object Data.fk)w

Otigmm

functional" requirements such U tlming and accuracy
o0n_trlin as.

The object specification must tIso detail the

function of the object. This could be in the form of

structured English, a state traazltlo= diagram or some
other appropriate notlltloa, such u differential

equations for the evolution of -,, "orbit s_-te'. The

function of an object can aLso be given by a lower level

ODD. Decomposition can continue recursively on all

ODDs until all objects have been decomposed into

primitive processes •rid states. Thil results in a

leveling of ODDs simil_ to the leveling of traditionll

D_. However, unlike DFDs, each objec't at each level

of •n ODD specification hu a complete object

specification. Each object should •Inn represent a

good problem domain abstraction independently of its

decomposition.

An ODD h a specification tool showing dam flow

rather thao software control structuring. However,

cootrol issues can actually be included on an ODD

wheo •bsolutely necessary. Larger arrows without

circles on their '-Sis indicate _ from one object to

another. An ODD specification should include the

minimum such "control flow" absolutely necessary to

specify a system. With this added notation. ODDs are

effectively the same u the (una_,_otated) "process

graphs" used in PAMELA (tin)._u

A system specification describes what a system

PAMELA is • trademark of Georse w. Cherry.

4-22

shourd'a'oln'1erms of the problem dam•in. The main

uutk of design is then to impose a control structure on

the system function to allow software implement•lion.

In object-oriented design the unit of modularity is the

object, this time considered in the usual sens_ qf_s
packages of data end operations on that data. ""

Ideally, the objects in the design should directly reflect
the objects in the specification. However, various

design considerations may require certain specification

objecu tO be grouped together Or split •part to

coastruct design objects. Further, there will almost

• lwsys be additional objects in the design to handle

"executive" and =utility" functions.

Desianine with Objects

The intent of an object is to represent a problem

domain entity. The concept of _ deals with

how an _b,_ct presents this representation to other
objects.'"" During specification we deal with objects

with high abstraction, close to the problem domain. In

design, however, there is t spectrum of abstraction,

from objects which closely model problem domain

entities to objects which really have no reason for
existence. 23"24 The following •re tome points in this

SClie, from best to worse

r_ _ An object represents a useful model
of a problem domain entity.

Action Abstraction * An object provides • general;z.ed

set of operations which all perform the same kind of

function.

Virtual Machine Abstraction - An object groups together

operations which are all used by some superior level of

Control or all use some junior level set of operations.

Coincidental "Abstraction" - An object packages a set of

operation which h•ve no relation to each other.

The stronger the abstraction of an object, the more

details are suppressed by the abstract concept.

The princlpte of _ states that. _.ch

detaiLs should be kept secret from other objects, 4'Iy

so u to better preserve the abstraction modeled by the

object.

The principles of abstraction and information

hiding provide the main guides for creating *good"

objects. These objects must then be connected

together to form an object-oriented design. In contrast

to the data flow.qrj,e/ttation of ODDs, our pbiect diaaram
design notation---.z,_.... shows control flow and module

dependencies between objects. This software structure

must, however, preserve the specified functions and

necessary data flow, though the actual data How paths

may be altered.

The transitlon from ODD specification to object

diagrams is mediated by consideration of two

orthogonal hierarchies in software system designs. 22

The comoosition hierarchy deals with the composition

of larger objects from smaller component objects. The

hierarchy deals with the organization of • set

|
I

i

1
t
|

!
I
I
I
I
I
I

I
I

I
I

I

|

|

1
.t
I FIGURE • _km Hie•ruby FIGURE 4 Ikmlorfly Hlerlrchy

_Slbm_JL_U

I o(objectsinto "layen'. Each layerdefines •
'Wh _ M to U leyen. 86 A _ male advantage Of" • seltim'ity hlenurchy is

major strength o("object diagrams is that they am fha¢ itreduces theCouplia s between objec_ This is
distinctly represent these _hia becam 8U objects hi one virtual mechine layer need to

know umhinli •bout senior Is_rs. Further, the

i The cmmpmiUoa hienurchy is dln_cdy _ ceomdlzatioa of the prucedund end date flow conu'ol in
by _ object _ (la figure 3), $imilmr to the seeker objects tam make u Wstom sosi_r to undo•areS
levelinl otrODDs. At its lop level, say complete system gad ncodU'y.

my be represeatad by • S_la object which interacts
with _ Beginning •t this system level. However, this very ten•rid•nation can cause •

i each object can them be tel'mad into component objecu messy bottleneck. In such cases,the complexity of
no • 8o_.r level object diasram, designed to meet the senior levels ¢8a be traded off _ the couplinS of

specifics•ion tot the object. The result is 8 leveled set of junior levels. The impormat point is thgt the strength of
ohj_-t dh_nlml wlkkdl campktely describe the the senJo_¢y hierlrehy i n • de_ cam be choeea from 8

structure of • system- At the lowest level, objuc_ 8re smm_mm of possibilities, with the but design generally

I completely decacopoted hsto _ such 8s lyinl between the extremes. This 8ires the desisnef
precedurts gad internal state clata scores. At hilher IPrsot power and flexibility in adapt•an system de=finns

levels, ob_'t cJ_gnlm leveling _ be used in • manner to specific applier•ions.
similarto Boech'8 "sub•yet•ms'.V

Fisu_ $ shows one pcesible desL•o lot the

i The seniority hierarchy is expressed by the ORBIT SIMULATOR. Note Uutt, by convention, the
toOoiosy o¢ commctine8 cm * sinSla object dW •rrow inbelad "RUN" is the in•the1 invocatloe o(the entire

(see figure 4). AS em_ be_veqm objects indkatm thus eye•am. In transitional des•8 n di•srsms such I f'tgure
one object calb one or more or"the operations peovkled $, it is sometimes convenient to show wtmt data flows

by another ob_L'L Amy layer in • seniority hi•tetchy along certain control arrows, mucK, in the manner Of

i _ call on toy opel_tio8 in jnl_or inyers, but near lilly itFl_.'ture charts c'J or "Buhr thefts*'. Then 8nnotet_otls
o_ratioa in • senior layer. Thus, •U cyclic will not appear on the final object dialrams.
relafioushipo between obje_ must be contained within

• vinusi nmchlne lalnn'. Object diagrams ere drawn In C'_lure $, the junior level com_nenel do not
with the seniority hlentrchy •howe varticzlly. FJth interact directly. All dot8 flow between junior level

i senior object c:mlhe daSillned as if the opergtinus objects must pass through the senior obj_t, though
provided by junior layers were *p¢imltive opemtinns" in ceeh object still receives and prnduces'811 specified
In extended lanJqe. F.ech virtual machine layer will date (For simplicity not Ill d•uI flow iS shown in figure 5).

sen•tully contain severld objects, egeh de$i8ned This dusiln is somewhat like an object-oriented version
according to the principles of •bstrgctinn end of the structgr_ed designs of Yourdon and

i information hidin8. Constantine. *_

4-23

I

I

iRUM

IJ[Olg40

FIGURE li Orbit 81mulstor- Centralized Design

nUN

TNRUeTER

STATUS

'_) ORelT

U[OlmO

OATAFLOW

CON11104.FLOW

4_OUNO
COMMM40

!

I
I
I
1

FIGURE ? Orbit 81muleter -- Oeeentrellzed Design

We am remove the d_.tl f!ow control from the

senior object and let the junior objects pus dat-
directly be_veeQ themselves, uSiog operations within
the virtual machine layer (see figure 6). The senior
object his been reduced to simply activating various
operations in the virtual machine layer, with very little
data flow.

We c_n even remove the senior object
completely by distributing control among the junior level

objects (see figure "/). The splRtlal o(" the RUN control

I
I
I

. arrow in figure 7 means that the three objects are I

sctivsted _ and _t they run concurrently. "'
The seniority hierarchy has collapsed, I_tviag *

_ homolos|ous or non-hierar¢hica.I design'-" (no
SmVCAT*OU _ hierL-chy, that is; the composition hierarchy still

remtlnt).

onsrr composition levels is very similar to what wou_dobe
v producod by the PAMELA (tin) methO_elogy. In fact,

it should be possible to apply PAMELA design criteria

to the upper levels of an object diagram based design _1_

c _ ,_ ._, ,_ __ of.highlyconc.rreots,.,emAll_oncur.n,objects I
I] _]_t mm_---_o°m_ j,_© _¢ I would then be composed, It t cecal.in I_vel, of objects

:_ _ _-_---u,_rc_. lem_ LL_eO_I representin| Certain process *idioms*. "v Below this

The entity-relationship model provides a bugs for

,zoom _ the data ('towing on an ODD. Not all these entities are

[-DATA FLOW

CONTn_LFLOW

FIGURE S Orbit Blmulstor with Oe©entrellzed
IDeas Flow

represented by specification nhjects, but they are
genereUy at too high s level of abstraction to b_ directly
represented by basic da t* structures. Therefore we
need to add a virtual machine layer of objects to
provide abstract data tYPeS which preserve the

abstrectioa o(" these problem domain entities, In the
case of the ORBIT SIMULATOR these data types might
include VECTOR, MATRIX, GROUND COMMAND and
simulatloo PARAMETER types. Fisure $ shows how
these objecu might be added to the simulator design or"
Figure 6.

4-24

I

I
I
!
l
I
l
I
l

i
!
I

I
I
I
i
l
I

I

ei_&.tlON
" n

FIGURE O Orbit Simulator Oenlon

Filuru I gives one complete level of the d_ilU

Of the ORBIT SIMg.ELATOR, Note that t_gure i does not

incJude the dam flow arrows used in earlier fiIures.

When there are several cOntrol paths on s compl_;a_
object diagram, it rapidly becomes cumbersome to

show dato/'lows. [_',_ld, ob_ct descTiDtionl for each

object on a dialmm provide detai/s of the data flow.

An object description includes a list of all

operations provides by an object and. for each arrow

leaP;nil the object, a gist of operations used from

another object. We can idcwtify the Operation,

provided mad _ by each object in _arms of the

specified data thaw and the designed Control flow. The

object cb-'scription can be produced by Itching data

f|ows to operations. For example, the description for

the DYNAMIC_ object might be:

Provides-

Initialize 0

Integrate (TIME IN'rERVAL)

Apply Thrust (TXRUSTER FORCE)
Current State O ORBIT STATE

Uses:

$.0 LINEAR ALGEBRA

Vector Add

Dot Product

Scalar Multiply

Matrig Multiply

6.0 PARAMETER DATABASE

Get Dynamics Parameterl

4-25

Data in gatrenthes_ are trgumenU which flow sloes

the control arrows, while unparenthesized data are

results which Ire returned

For objects with specifications and lower level

ODDs, we can recur$ively construct lower level object

diegroms. These lower level designs must, however,

beth meet the functionality of the specifk:ztion and

provide the oparations listed in the object description.

Some design objects, however, will not have object

speCifk:stions. Abstrl_1 data type objects cln have

their design I:ased on the structure of the entities they

represent. For "executive" objects like SIMULATION

SCHEDULER it mey be worth cr_tinl a specification for

it before proceeding with design as above. In Ill cases,

the design process continues recunively until the entire

specification has been covered by the design and all

objects are completely decomposed.

lmnlementatlon

The transition from an object diagram to Ads is

strai|htforward. The'relationship between object

diaIram notations and Ads languale features is:

Object Packase
Procedure _bt:m_ram

State Packqe/task vuuriables

ArrOw Subprolram/entry call

Actor Entries/Accepts (not

covered in this paper)

Package specifications are derived from the list

of operations provided by an object. For the

DYNAMICS object from the last section the package

specification is:

package Dynamics Is

tYPe ORBIT STATE Is
record

Position : Linear Algebra.VECTOR;

Velocity : Linear Algebra.VECTOR;

eod record;

procedure InitiaJize;

procedure Integrate

(For Duration : Io DURATION);

procedure Apply_ Thrust

(Force : In Linear Algebra.VECTOR);
function Current State

return ORBIT. _TATE;

end Dynamics;

The package specifications derived from the top

level object diaIram can either be made library units or

placed in the declarative part of the top level Ada

procedure. For lower level object diagrams the
mapping is similar, with component pnckage

specifications being nested in the package body of the
composite object. Stales ere a-.appeal into packaIe

body variables. This direct mapping produces a highly

nested program structure. Alternatively. some or ell of

these packaies can be made library units or even

reused from nn existing library. However, this may

require additional packages to contain data types and

state variables used by two or more library units

The process of mmsformiog object diagram* to

Ada is fotlowed down tU the object diagram kyats anti!

we reach the level of implementing individual

subprogram. Low-level subprograms can be

designed and implemented _ing tradlslon•l functional

techniques. They should generally be coded e*
subunits, rether the• being embedded in package

bodies.

The clear definition of abstract interfaces in an

object-oriented design can also greatly simplify testing.

When testing In object, there is 8 well defined "virtual

machine" of opcratioe* it requires from objects at 8

junior level of at_tractlOno some of which ntay be

stubbed-out for initial scotia8. Further, object-oriented

compothion encouragu incremental integration

testing, since the "unit testing" of a composite object

really cons;,ts of "integration testing" the component

objects at • lower level of abstraction.

Reusability

Software reusability is one of the major driver*

for the development of the Ad• programming language.

Ada features such as generic packages are taeful

but hmgualo feature, are not sufficient to

guarantee high love t, of software reuse. Whet b also

needed it an I1_ to specifying and designing
reusable components. This _ction shows how our

method supports such an approach, and •asp presents

an example of how generic program units can be used
in the context of the method.

Software reusability it still more of 8 research
topic than part of standard practice in the/']cld. This

section will discuss three concepts that support a high

level of retu_. They orate use an object.oriented

approach, to reuse the products of all llfe cycle phLw.a.

and to provide dogumentatioo that is both u.l_ful and

maintainable, This is by no means a complete list of

relevant factor*, but our experiences in developing flight

dy••mk:s software have proven their utility.

Obiect-Oriented Annroach

Using an object-erie•ted approach it useful not

because object-oriented design is essential for reuse,

but because the underlying concepts are. The common

eleme•t_ that are important are:

-- Data abstraction and information hiding
-- l_vels of virtual machines

-- Inheritance

Parnes 20 discusses the importance of the

abstraction, information hiding, and virtual machine

levels in making software easier to reuse. Cox shows

',he importance of inheritance by comparing the size of

the Smalltalk environment (40.000 lines) and the

Berkeley Unix environment (400.000 lines), where the

former environment glelied heavily on inheritance to
promote remhility. I

Ado cannot support inheritance as easily as
Smalltatk. but can simulate it through the use of the

composition hierarchy. We will continue the sample

orbit problem to show the simulation of inheritance and

to show how Ado generics can be used in the context of
object-oriented design.

4-26

In the object diagram for the orbit simulation

system (figut_ 8) the object LINEAR ALGEBRA is at the

lowest virtual machine level. It provides an extended

language that allows the developer* of objects such as

DYNAMICS to write code in terms of linear algebra

operations, rather than in terms of arrays and loops. A

non-generic Ado library package can serve thb

purpose, but implementing a generic provides the

advantage of controlling floating point accuracy.

Another reason to make a package generic is to

mum the simulation of inheritance. We will demonstrate

this by building the Dynamic, package around a

generic numeric integrator with the following

specificntiow

generic

type REAL is digits <>;

type STATE_VECTOR is
array (INTEGER range o) of REAL;

with function State_Derivative
(T : DURATION: -- from reference time

X : STATE VECTOR)

return STATE_VECTOR;

package Generic Integrator Is

procedure Integrate

(For_Duration : I• DURATION);

function Current State
return STATE__VECTOR_

procedure Inhi•lize;

end Genericlntegrator',

This package provides the ability to numerically

iotegrate • vector differential equation with an arbitrary

state vector size. The Integrate procedure can be

implemented as a vector equation, or as s set of

individual real-valued functions. To implement it as a

single vector equation we wilt need the operations

provided by package Linear_Algebra. These

operations can be incorporated in two ways. One

po_ibillty is to make the operations needed into

generic formal parameter*, Another is to instantiate

Linear Algebra within the integrator itself. Each

method has advantages sod drawbacks. Using generic

formal subprograms enhances reusat_t4ty by making

the component self-contained, but if too many are

needed the interface becomes complex, lnstantiating

Linear_Algebra within the Gencric_lntegretor makes a

cleaner interface, but couples the generic package to

another library unit. The pilot project team hen used

both methods. Figure 9 shows how the object

Integrator_Linear Algebra is the instantiatlon of t

generic package.

Figure 10 shows the composition of the

DYNAMICS object, Orbit_Integrator iq the i_tantiation

of the generic package discussed above. The generic

package is instantiated with Orbit_Equation as the
actual parameter corresponding to the formal

parameter function State_Derivative. The operations
"tnitiali_e" and "Apply Thrust" are shown _n figure l0 as

component procedures, represented by rectangles.

The other Dynamics operations are "Current State" and

"Integrate." These operations are _ from the

Orbit_Integrator object.

I

I

1

!
I

!
i
i
I

i
i
I

I

I
I
i
1
I
I

I

!
l
I
I

I
!
I

I

i
I
I
I
l
i
|

l
I
I

.,,.,

p

AR I .O•lUVATIYe. Igr&T•

Ir'-1
STAll[O_TA

m[t4E_¢ I_lUl_ ¢*.

CGml_L PLOW

JWJU¢ °'t
|nS'f ANTiATIOn

FIGURE g Generic Integrator

mITL .IZl

q

6 2.I
• ¢UI_E_r

ACCELERATION

'1Iv

FIGURE 10 Oynlm|¢ll

Smalltalg'a subclassin813 provides an elegant

mea_ of Juplmoaing inheritat_e. Ads does not directly

support inheritance, hut the concept can be simulated

by using *call*throughs. = A call*through is l

subprogram that has little function other than to call on

inothtr g_tckllg_*s subprogram.

To $1mldste inberitence when implen_nting the

Dynamics _tchage the subprogrants Integrate and
Curreg_t State would be res_cifiod in the DyMmics

paclutge:with the subprogram berlin in Dynamics

ctllinl on the ¢_'rest_mdiol opmttlons in

Orbit _Intqnttoc. The ¢a.*O.rou8h for Current_Sate
would nb, o he,re to take ¢_re of _t'tinli the lower°

level data type "STAI"E YECTOR" returned by the

Lotegrator to the hlgher-level type _ORBIT S'I'AT_".

This ter..bnique is clearly _ elegant Slum

Smalltaik subcles,ting, but it also has •d,raotages.

First. A "t* allows iuheriumoe from more alum one object.

Secondly, Smalludk forces the inheritance of all

opecations and dam. An operetiou can be overridden.

but not removed, fro_t I ¢leu. The Ado specification of

the composite pat:kilo lives the devetoper precise

control over which operetioP,I and date items ire visible

or _:cessib_ I= the Dycamica euamte the o_catkms

"lntegrete* tad *Current State" are inherited by

Dynamics, but "tnit;*lize" is apt.

Reuse AcrOss the Life-Cycle

Reuse •crees the Ill, cycle is t concept
promoted in both resem'¢h'" and production

environments. Tolbibe claims that the llfe cycle

approach used in their f_ftwnro factory yields 83
percent softwlu'e reuse'". The key to Toshibe'J model

is that the life cycle is represented as a series of

transfor,,,*tio,,, from • user need to the final product,

thus preserving tcace, abillty. The final software is made

more general (and thus reusable), then the |pecification

is rewritten into a =presentation" that is consistent with

the generalized code. These presentations wre used

when pew s_tem re¢iuiremeots •to being developed.

Our method can he used to support a model

sigh as T_hib,'s. because objects can be mu:ed from

the ODDs to object diagrams to Ado code. Tothihe's
concepts need to be refined so that 8 Jingle

requirement (eg.. "integrate orbit e¢luation*) can be

mapped into several implementations (eg., different

numerical integration algorithms). Another drawback of

the T0shiha model is that it is not designed to handle a

wide V_riety of problem domains. We address this by

le_ving room for application*dependent notations in the

object specification, and by providing the two

orthogonal design hierarchies.

The specification and design documents must be

maintained along with the cede. These documenL_

provide the traceability thai is needed for software

reuse. Out pilot project team has found that the volume

of documentation generated makes it hard to keep the

design notebook consistent with the source code.

Adding t specification notebook will compound this

problem. The solution is to maintain as much

information as possible on a computer, and to extend

the use of configuration control software to the

specification and design

4-27

Another factor in reusing softwlre is how Out

documentation should be accessed by developet_
when there is a large library of reusable componenU.

The similarity between the entity dictionary and AI
knowledge representations encourages the belief that

expert systems may ultimately play e role. However.
more conventional library tools'have the advantage of
not being tied to the development metho4 used.

interme_rica has been doing research into such
systems" by developing a prototype Ade Software
Catalog (ASCAT).

The techniques described in this paper have
evolved from our exl_rience with two Adl projects and
one Modula-2 project in addition to the original pilot
projecL A.t of this writing ell these projects are in the
late stage* of d_velopment. The real>pose to the
object-oriented approe£h has generally been quite
favorable, ocme the new techniques are understood.

As these projects are completed, we plan to use
the substantial amount of data being gathered to begin
to quantify the productivity of our methods. All the
systems will be used in actual operational
environments, allowing us to study their reliability and
maintainability.

The traditional functional viewpoint provides e
comprehensive framework for the entire software life-
cycle. This viewpoint reflects the actloa-oriented nature
of the machine* on which software h run AS we have

distorted here, the object-oriented approach can aLto
provide a comprehensive view of the life-cycle. The
object-oriented viewpoint, however, reflects the eutturel
structure of the problem domain rather than the implicit
structure of our hardware. Thus, it provide* a "higher*

level" approach to software development which
decre&te* the distance between problem domain and
software solution. By making complex software easier
to understand, this simplifies both the system
development and maintenance. This is the goal of our

general object-oriented Ado life-cycle.

1. A|resti, William W. "An Approach ¢o Developing
Soecifica.tiou Measures" Proceedinas of _he 9Ih Annual
Software En_ineerint Workshon, GSFC Document SEL-
g4-004, November 1984.

2. Agresti, William W., el. at. "Designing with Ada for
Satellite Simulation: a Case Study,"
1st International Conference on Ads Anolications for the
Space Statio_l, June 1986.

3. Basili, V. R., el, al.'Characterization of an Ado

Software Development." Counter. September 1985.

4. Beech, Grady. Software Enelneerina with Ado
Benjamin/Cummings. 1983.

3. Booth, Orsdy. "Object-Oriented Software
Development," IEEE Transactions on Software
Enaineerin_. February 1986.

4-28

6. Beech, Grady. Software Comnenents with _dL
Benjamin/Cumminp. 19117.

7. Buhr, R. J. A. S_tem Desien with Ads, Prentice-Hall,
1984.

S. Burton, Bruce and Micheal Broido. "Development of
an Ada Package Library', Proceedinas of the Ist
International Conference on Ads Applications for the

Snace Station, June 1986.

9. Chen, P. "The Entity-Relationship Model -- Toward a

Unified View of Data," ACM Transactions on Data Base
Systems, March 19"/6.

10. Cherry. George W. PAMI_LA Desianer's Handbook,
Thought**Tools, 1986.

I I. Cox. Brad. "Message Object Programming: An
Evolutionary Change in Programming Technology,"
_, January 1984.

12. Dijkstre, EdsgarW. "The Structure of the 'THE"
Multiprogremming System," Communications of the
ACM, May 1968.

13. Goldberg, Adete and David Robson. Smatltalk-80:
"]'he Lan_usae and Its Imntementation. Addison-Wesley,
1983.

14. Martin, James and Carma M¢Clure. Diaaramming
Techniaues for Analysts end Procram_ers_ Prentice-
Hall, 1985.

15. Matsumoto, Yoshihiro. "Some Experience in
Promoting Reusable Software: Presentation in Higher

Abstract Levels," IEEE Transactions on Software
Enaineeripa. September 1984.

16. McKay, Charles. Lecture to GSFC Ads Users
Group. April,19g6.

17. Minsky, Marvin. "A Framework for Representing
Knowledge," in The Psvcholoev of Computer Vision, ed.

by P. Winston, McGraw-Hill, 1975.

18. Nelson, Robert W. "NASA Ada Experiment --
Attitude Dynamic Simulator," ProceedhaP._ of the
_ashinaton Ads Svm_sium. March I986,

t9. Parnas, David L. "On the Criteria to be Used in
Decomposing Systems into Modules," Communications
of _e ACM, December, 1972.

20. Parnas, David L. "Designing Software for Ease of
Expansion and Contraction," IEEE Transactions on
Software En_ineerina, March 1979.

21. Quillian, M. R. "Semantic Memory" in
Information Processino, ed. by M. Minsky, MIT Press,
1968.

22. Rajlich, Vaclev. "Paradigms for Design end
Implementation in Ade," Communicatio_ of the ACM,
July 19gi

I

I

I

I
I

t
i
I

i

!
I

I

I
I
I

I

i
I

I
i

1
I
I

11
I
I
!

t
I

I

I
i
I

II
i

i

23. Seidewisz. J[d _d Mike SCark. "Towards a Geuend

Object-Qrkmted Sotcwum DeveioOment Memodokqy;
_rO_Md;n,_ Of the Ill |nfernJtlansl Cont'ef_nee on Ado

oolieuflon for the Snlce Scat_on. June |986.

24. SeidewitZ. Ed sad Mike'Stark. General Obie_-
('_'ient_ Snf'_vur_ l_evel{mmenl. GSFC _melll $1_1.,o

86..4)02. Auenst 1986.

25. Younkm. l_wusd and Larry L. Constuntine.
Str_turL_l I)_i.n" Fundementsl5 of a Discinllne of"

Comnumr Protram end Systems Desimn. Yomrdon
press, 1978.

F.d Seidewitz works at Um NASA Goddard 51xice Right
Center as • flisht dynamics analyst. He is also very
involved in the development of analysis mt'tware, user
interf_ de,is Ind up_lk:stious of Ad_ He has

previnudy wm'kod in _ liylKems eqineerine.
compeer aided imm'w_km _ _K'Jchd inteUilience. He

bokU two B.S. dqreas from the Mmmchusetu
Institute cd"TecJuwiogy, one in Aemmutlcs and
,_smmutk= end cme _,, Compumr S_hmce uad

EnSinns/'h_. He is • member o/" the American Institute
for Aeronautics ud Astmaau_ end theAssociation of

C.ou_utinu _.

Mike .Y_tmrkworks in tll Systems Development Branch
st the NASA Goddasd Stxtcag Flight Centor. Helms
worked N flight d_mcs sum_ort software for the
EKBS _ COBE nslollitas Imd is ¢nsvently involved in
the im_ o(an attitude dyumics simulator in

AdL He hoMs• B.A. desree in Httheme¢ics •rid
F,_ froas Oimdin ("..oD_I_ ud is cun'e_dy
workin| ms • Master8 in Computer Science in the Johns
Hopkins University Pare Time Engineering Program.

4-29

A STRUCTURE COVERAGE TOOL FOR

A.DA. TM SOFTWARE SYSTEMS

Liqun Wu, Victor R. Basili, and Karl Reed a

Department of Computer Science

University of Maryland

College Park, MD 20742

Coverage metrics have traditionally been used to

evaluate the effectiveness of procedures for testing

software systems. In practice, however, the metrics are

heavily influenced by the characteristics of traditional

programming languages such as Fortran and Pascal.

Languages such as Ads differ from traditional languages

to such an extent that it is necessary to develop new

metrics.

This paper proposes a number of coverage measures

for Ads features such a_ packages, generic units, and

tasks, and discusses their interpretation in relation to

the traditional coverage metrics. It also propose a

mechanism for collecting these coverage measures. In

addition, it suggests that coverage metrics may also be

interpreted us indicators of dynamic system

performance.

_TRODUCTION

The last few years have seen an increased emphasis

upon the development of techniques for assessing and

controlling the quality of software products. Research

in the U.Sfi, 5,2, 13,4 , and practice in the Japanese

computer manufacturers' software factories 17,26, 12, 23

have recognized the importance of measures of program

structure on one hand, and techniques for quality

assurance on the other as fundamental aspects of

software quality assurance.

The third author is on leave from the

Department of Computing at the Royal Melbourne
Institute of Technology, Melbourne, Australia.

Ads is a trademark of the U.S. Department of

Defense - Ads Joint Program Office.
Support for this research provided by NASA Grant

NSG-5123 to the University of Maryland.

The vast bulk of the work to date distinguishes

between measures of program and system structure,

which can be obtained by automatlc analysis of source

code, and dynamic measures of program quality which

develop confidence in program quality by testing the

system 22 would be McCabe's cyclomatic number for the

former 15 and test coverage for the latterIs,14

There have been few reports of efforts to integrate

both static and dynami_ measures to allow an overall

assessment of software quality.

The TAME b project at the University of

Maryland's Department of Computer Science intends to

integrate tools for obtaining both static and dynamic

measures of program quMity into a single environment.

This will allow the quality of a software product to be

monitored at all stages of its evolution and allow

judgements to be made upon the basis of various values

obtained. Although TAME is overwhelmingly language

independent, its first application will be for monitoring

systems written in Ada.

Most of the useful code-based metrics measure the

static structure of the source because there is a serious

shortage of measures of dynamic structure, with Conte

et. al. 10 citing only a simple liveness measure.

Considerable experience has been gained in using

these two classes of metrics to study systems

implemented in traditional programming languages such

as FORTRAN, COBOL, Pascal, and PL/I, and many of

the quantities measured reflect their characteristics.

The availability of languages such as Ads and

PROLOG, and their use in applications systems,

necessitates the development of new measures, since

these languages differ significantly from those currently

under study. Structural coverage metrics will need to

be tailored to allow for the impact of these new features

upon programming practice.

b See s and 7 for a complete description.

294, Joint Ada Conference 1987

4-30

I

!

I

I
I

!

I

I
I

I

I

I
I

i
i
I
I
I

I
I

i
I
I
I
I
I

I

The results of a joint study between the University

of Maryland and General Electric t show that a number

of Ada features such as packages, generic units,

exceptions, and tasks, appear to be misused, and to be a

source of program faults. Applying existing measures to

Ada programs without explicitly recognizing its unique _

characteristics may lead to a totally misleading picture

of a system.s structure and quality.

Traditional measures of test coverage include 22

a) the percentage of source code instructions executed,

b) the percentage of partial paths traversed c,

c) percentage of predicate outcomes exercised,

d) the percentage of procedure or function calls made,

e) the percentage of procedure_ executed,

The first three of these measures are essentially
statement level measures and reveal little about the

system structure. On the other hand, the last two

measure the procedural level and provide an indication

of system structure.

Measures relating to procedure usage will need to

be reassessed because of the impact of Ada's generic

units and facilities for partitioning systems. In addition,

new measures should be defined for tasks and exception

handling.

Measures of the dynamic behavior of a large system

consisting of a number of program-units cannot be

obtained easily by examining its source code. They

may, however, be deduced from an analysts of the

system's behavior during execution 3 and interpretation

of statistics normally associated with testing, such as

various coverage measures, and for altering the

strategies used for planning tests 18

The objective of test coverage measures is to allow

some estimate to be made of the extent to which a set

of tests is likely to have revealed errors in the test

subject 16,25,22 generation, and the interpretation of

coverage metrics, will depend upon whether a series of

unit tests, a subsystem test, or a complete system test

are being planned.

In what follows, we propose a number of measures

of static and dynamic structure for systems

implemented in Ada. We discuss their interpretation in
relation to traditional test coverage measures as a first

step in the development of a more complete method of

dynamic structure measurement through testing. These

are, in general, re-interpretations of existing measures.

Many of the measures are not specific to Ada and

can be applied to any language supporting multiple

entry points,(e.g. Fortran, PL/I, Assembler), internally

and externally callable procedures (e.g. Cobol, PL/I

c A partial path is the shortest section of code

connecting two decision statements which does not

contain any other decision statement.

Assembler), generic declarative structures, or tasking

(e.g.Module).

ADA AND COVERAGE MEASURES

There are four important features of Ada which

imps_t the design of coverage measures which will be

discu.'_ed further in this paper. These are:

a) generic units

b) packages

c) exceptions, and

d) tasking.

The first two of these deal with the procedural level

of system structure, while the last two support non-

deterministic system behavior. A complete set of Ada

coverage measures must include the statement level

metrics mentioned earlier. Table I shows the

relationship of the various measures.

Generic Unit

Generic units may be iustantiated into a new unit

by a declaration either overloading an existing unit

name or creating a new one. Insta_tiations may apply a

generic unit to different types. It is not possible,

therefore, to asaume that a particular generic package
has been properly tested until all its instantiations have

been teated. Steps must also be taken to ensure that all

references to individual instantiations are correctly

counted. At least one currently available path analysis

tool falls to make these distinctions

Ada's provision for block statements, executable

units containing declarations It , raises the possibility of

a particular iustantiation of a generic procedure not

actually being elaborated with the result that type

checking may not be complete d . We will need a

coverage measure for generic unit elaboration for this

reason •

Packages and Libraries

The potential use of Ada library units and

packages as devices for arbitrarily partitioning a system

also presents a problem s In this case, the public entities

in the package or library constitute a potential set of

entities that can be referenced from any part of the

project. It will therefore be nec_saary to decide which

entitles should be included in coverage counts and the

method to be used in categorizing them.

d We note that block statements also require special

treatment for similar reasons, however, we have limited

our discussion to those features which illustrate our

point.

Joint Ada Conference 1987 295

4-31

A particular package may contain units which can
be referenced from within the package as well. This
provides "another basis for estimating coverage e.

TagkinE and Excention Handlint

Ada's taskingrand exception handling mechanisms
add a new dimension to path coverage since it may be
desirable to verify that paths which traverse more than
one program unit are exercised and to verify that
various interactions actually occur. Each of these
a_pects of Ada must be accounted for in any proposed
measures and explicitly considered in their
interpretation.

The issues _discussed here apply to other languages
which support similar features.

COVERAGE METRICS FOR ADA

We focus on the impact of Ada's facilities for

partioning systems and on the impact of generic units
because these are the features which necessitate re-

evaluating the approach to coverage measures. Any
complete set of measures for Ada would, of course,

include specific examples for packages and procedures of

both the generic and non-generic variety. In that sense,
some of our definitions are themselves generic.

Procedure Interaction and vartionin_

We wish to distinguish between the static structure
and dynamic behavior of a system which may consist of

Ada library units, packages and a program. We may
then obtain an indication of system complexity based

upon this difference.

Let us consider a system which references "n"

different units. Let us also suppose that there are a

total of "m" references to the "n" units. The ratio n/m

would provide an indication of the static complexity of
such a system. Two systems may have identical (n,m)

pairs; however, they may have different interactive
complexity since one may activate most of its references

to the m units, while the other may not.

The total number of references executed by a set of

tests which represent a typical input would also provide
an indication of absolute dynamic complexity. The

ratio n/m corresponds to a procedure call coverage
metric.

We willbase our discussionon procedures since

these are among the most significantprogram units
from a system structurepointof view.A system written

in Ada will appear as a collectionof packages and

e Other languagesshare thisproperty.

296 Joint Ada Conference 1987.

4-32

subprogram units, each of which may have multiple
procedures.

We can distinguish several different types of
procedure reference, depending on the location of a
reference and its target

a) Intra package reference ... the reference in the

current package is to a procedure in that package,

b) Extra package reference ... the reference in the

current package is to a procedure in some other
package,

c) Inter package reference ... the reference is directed

to a procedure in this package from some program
unit outside the package,

d) Combined inwards package references ... the sum of
a) and c), and

e) Combined outwards package references ... the sum

of a) and b).

These can be repeated forthe program reference...
giving

f) Intra program reference ... the reference is to a

procedure in the program, and

g) Extra program reference ... the reference is to a

procedure outside the program.

Dynamic Interaction _VIea._ures

It is possible to define a wide range of these metrics
which measure the amount of interaction between
specific packages; however, we restrict ourselves to the

following simple examples to illustrate the principle f.

A) The number of extra referencedprocedures in a
package called compared to the number of

proceduresin a package

B) The number of combined inwards procedures

referencedproceduresin a package calledcompared
to the number of combined inwards package
references,and

C) The number of extra procedure referencesin a

package executed compared to the number of extra
procedurereferences.

Measure A cannot be interpreted without a
knowledge of the the number of combined inwards

referencedproceduresforthe package concerned and the

context of the test. It will convey no information in

addition to a staticcount of the referencedprocedures
in a package if the package is in a system test.
However in the case of a unit test, it will show that the

components of the package are inadequately tested.

f We could consider interaction between a given

package and each of its partners, and some subset of its

partners, for example. We could also consider all possi-

ble combinations of these against the procedure refer-
ence categories presented above.

1

1

I

I

I

I

I

I

I

I

I

I

I

I
I

i

I

Me_ure B will show the extent to which a

particular package's inwards calls ire being utilized by a
particular test. It will, as the procedure coverage
asymptotes, provide an indication of the total dynamic
complexity of the package's inwards communications.

It Is also interestiag to consider the implications of
this measure for a single test case since it provides an
indication of the dynamic complexity of the path ti'aced
by the individual case, This may be useful in judging
the difficulty in debugging fanl_ found during the test.

A similar interpretation can be applied to to
mensure C.

GENERICS AND COVERAGE MEASURES

A generic unit is a template from which particular
instances of a general unit can be obtained. A
declaration provides a program unit name and an

optional generic_actual part g specifying the name and

the types to used by this particular version of of the
package. The elaboration of the declaration of an
instance of a generic un!t creates a new version which is
distinct from other versions generated from the same
generic unit. This is true even if instances have been
instantiated with the same generic_actual_part.

Instantiated units are indistinguishable from
ordinary units. All relevant coverage measures should
therefore be collected for both types of units. For
example, procedure call coverage meuures should
clearly be collected in both cases,

In addition, elaborating an instantiation effectively
completes the process of type declaration and can
produce errors. Coverage measures are necessary for
this ca._e also. Any knowledge of the instantiation can
be obtained only by an examination of the instantiating
statement and the generic unit, and any data about its

behavior can only be collected by monitoring the
original generic package or the point of instantiation.

The mechanism used to obtain coverage measures

for procedures cannot readily be used for generic units.
_vVe shall discuss an appropriate method in the section

on implementation h.

i Seell page 12.8.

h The Ada instantiation and generic package
mechanism automates the proce_ of type translation
which might otherwise be achieved explicitly by a pro-
cedure which existed solely for that purpose. Monitoring
procedure usage would, of course, be simpler in such a

case, but the semantics of the linkage between a pro-
cedure pair might not be apparent. Ada makes the link

• explicit but complicates the measurement process.

4-33

Coveraze Measures Fgr Gener|cs

We will discuss an number of measures for generic
units, focusing on insta_tiation since it is this feature
that makes the generic unit special.

L The first dynamic measure for generic unit should be:

• Elaboration Coverage for a Generic Unit

** the number of instantiations elaborated for a
generic unit divided by the total number of actual
instantiations for this generic unit.

It is nece_sry because type checking can not be said to
be complete until a declaration is elaborated, as we have
already said.

This measure is essentially a procedure coverage

metric, but it may also be used to provide an indicttiou
of the extent and nature of actual reuse of a particular
generic unit, as distinct from that which was intended.

An equivalent static measure would be the number
of]nstantiating statements for a given generic unit.

• Total Elaboration Coverage for Generic Units

If the average number of instantiations actually
elaborated for all generic packages is large, it could

mean that this system is making effective use of its
subcomponents.

• Generic Unit Instance Coverage

From a test confidence point of view, exercising
each instance of a generic unit is necessary since errors
occurring in one instance may not appear in another. A
test set which exercises a large proportion of generic

instances without producing errors will raise user
confidence significantly. We recommend two measures
in this case, one for individual generics, and one for a
complete system.

Individual instantiations may have different
combinations of data types and operators an parameters

as represented by their individual generic_actual_part.
This is a major reason for insisting that each instance of
a generic unit be exercised. Ada's overloading of

operators can lead to a situation where a previously
tested program unit may be used with new data types
which are not valid for its semantics. However, the
iastantiation will not be invalidated if there exist

operators for data types supplied. This is a sufficiently

subtle problem to warrant special attention.

It is therefore important to collect coverage
measures for data type usage which provide a
perspective of how data types are exercised dynamically.
We need to know the the structure of each unique
generic_actual_p_rt associated with each generic
procedure, since this specifies a semantically unique
in_tantiation.

Joint Ada Conference lg67 297

• Unique Lnstantlation

** an instantiation of a particular executable generic

unit is said to be unique if the general._actual_part

specified differs iv. terms of actual type usage from

that used in any Qther instantiation of that generic

unit.

Based on this, we get the following coverage

measure:

• Unique Instantlation Execution Coverage

** the number of unique instantiations being executed

for a executable generic package divided by total

number of unique instantiatioas declared for that

generic package.

A hif,h value of this measure means that the unique

instantiations for the generic have been extensively

tested. The tester may have increased confidence in the

unit ifno errors were detected.

It may also be useful to exercise a generic package

with generic_actual_parts applying it to a variety of

data types. This would require some prior knowledge of

the problem domain for which the unit was intended. A

testing philosophy of this type could lead to the

certification of a generic package for a set of data type

combinations.

The method of collecting this information will be

discussed in the section on implementation.

Parameter Utilization

A generic procedure may have been created by

extending the application of some existing procedure to

a new type set. It will be necessary, therefore, to

monitor the internal statement coverage, during

subsequent testing, to ensure that the behavior of all

operators are verified. One particular possibility is that

the type of only one of a generic procedure's parameters

may be altered. In this case, a tester will be interested

in ensuring that all statements affected by that

parameter are exercised.

We can use the method described by Rapp and

Weyuker 19 to obtain the set of "all-use-paths" for a

particular parameter h. Designing tests which ensure

that the set of "all-use-paths" for a particular

parameter were covered would ensure that all

statements in which the parameter appears are

exercised. This will ensure that any new uses of type

conversions and operators are actually tested.

The following metric would indicate effectiveness of

a parameter use coverage test.

• Parameter Usage Coverage

** the number of statements in which a parameter

appears which are executed divided by the total
number of those statements.

Tests aimed at collecting thls metric would ensure

298 Joint Ada ConfenDnce 1987

4-34

that the impact of parameter type changes was
evaluated.

A similar static measure could be proposed which

would show the the extent to which a package was

likely to be influenced by a particular parameter.

• Parameter Usage Factor

** the number of statements in which a parameter

appears compared to the total number of

statements.

TASK AND EXCEPTION COVERAGE

A complete system written in Ada may contain

independent tasks. A fulltest of such a system may be

the only satisfactory mechanism of evaluating task

interaction, since task unit tests would validate the
function of the task and not its user. A similar

argument can be applied to exceptions; a unit

containing exceptions can not be considered tested until

it has raised all its exceptions. Coverage measures are

therefore required for tasks and exceptions. In the case

of the former, we woutd .wish to know...

a) whether every task was activated,

b) whether every entry to a given task is used.

Coverage metrics can be defined readily for these

cases.

An identical set of measures would be needed for

exceptions.

Task Execution Sequence

While not a coverage metric, we advocate recording

the task execution sequence. This will simplify the

detection of errors due to poor synchronization

strategiesand allow the construction of tests designed to

force particular task ordering.

IMPLEMENTATION

The statisticsnecessary for computing the coverage

measures that we have proposed can be collected by the

use of automatically inserted probes t written in Ada is

under construction as part of the TAME project7

environment.

h See also Weiser et. al.25and Weiser 24

i See Brown and Hoffman 9 and Stucki 21,s2 for ex-

amples from other languages.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

!

l

i

I
I
l

.I
I
I

I

I

I

I

I

I
l

i

Str.-'cture te_t coverage execution requires two

components: an instrumented pr_ram and an execution

monitor. Probes are inserted into the source code to

obtain the instrumented program. The execution

monitor initializes the prooes, records when they are

executed, and reports on its results.

We use a generic probe package to implement the

execution monitor. Elizabeth Katz first used this

approach in a prototype coverage system, but that

approach has been extended. As Fig. 1 shows, this

l_ackage has two generic parameters and declares two

procedures. Size (a parameter given to the generic

vackage initiate record) indicates how many probes

have been added to the code. The increment procedure

is called with a probe number in this range whenever

the associated probe in the instrumented program is

executed. A separate probe number is allocated for each

unique object under observation. The report procedure

reports on theJresults whenever it is called.

We will now consider bow the nature of these

probes varies with the various items being monitored

and discuss their insertion in the program to be

instrumented.

TABLE: ! - RELATIONSHIP BETWEEN TRADITIONAL

AND ADA COVERAGE MKASURKS

MEASURE

Ii_$trumentlnt'The Proeram

An instrument consists of two components: the

probe and its monitor. The probe is inserted in the

code, and the probe monitor collects the data.

Probe Monitor

Probe monitors will be implemented as genetic

4-35

package. They consist of variables which record values

for some coverage measures whenever the procedure

increment is called and compute the necessary statistic

when the procedure report is called at the end of each

unit's execution.

Inserting a probe into a generic unit would cause

multiple instances of that unit to call a single .probe

monitor. Some difllculty would then be experienced in

deciding which instance of the package had actually

called the monitor.

generic

instance_no : natural;

c_table : record_type;

package probe_monitor is

procedure increment(probe_number: 1..size);

procedure report;

end probe_monitor;

Fig. 1. Structure of probe monitor

Using generic packages for probe monitprs solves

that problem since a new version of the monitor can be

created with every instantlation of the the unit being
monitored.

This is implemented by inserting an instantiation

statement for the probe monitor inside the specification

part of every generic package. Whenever a generic

package is instantiated, a new instance of the probe

monitor is generated. The variables in one instance will

give coverage measures for one instance of a generic

package. Therefore, we can easily distinguish the

coverage measures of a generic package for different

instances. The structure of the instrumented

specification part for a generic package is shown in Fig.

2.a. The instantiation for such a generic package is

given in Fig. 2.b.

There are two pm-ameters pa_ecl to the probe

monitor. The firstis an instance number identifying the

particular instantiatlon of the generic unit, and the

second is a table represented by Fig. 3. The instance

number is not used for non-generic units.

The table has two components. The firstone gives

the unit name (e.g. name of generic package), and the

second one is an array which holds detailsof each probe

active for that generic uniti. The details include the

probe's usage, location, count, value, etc. Therefore,

every instance of the probe monitor must be aware of

the meaning of each of its probes and the total number

in use.

The tables themselves are instances of the generic

table shown in Fig. 4. Property_list is a record whose

structure is determined by the number and nature of

the properties of each probe as described in the bottom

J The non-generic units a treated as a single unit.

Joint Ada Conference 1987 299

generic

c_no: natural;
package XX is

,o.

xx_monitor is new probemonitor

(instance_no---- > c_no; c_table--_ > xx_table);
*oo

end XX;

a. The structure of instrumented specification

part for a generic package

yy is new xx(...; e_no => xx_uo);

b. The instantiation statement for

the generic package

Fig. 2

r nJ

i°:i::meii: iuliP°be
Information for each probe

Fig. 3

row of Fig. 3. The generic table has the form shown in
Fig. 4.

All instantiation statements for this generic table
will be inserted at the beginning of the main program,

since the number of probes needed for each program

unit can be determined during compile time. One

instance of the probe monitor can therefore collect the
coverage measures for all non-generic program units or
one instance of a generic unlt.

Task Monitor

The task monitor is implemented by a task with
one entry which receives the signals from tasks and
records the sequence of task execution. Each task may

have several entries which may be invoked by other

program units (including tasks) and may also have
statements which invoke entries in other tasks. Since

the tasks can be executed concurrently, the invoking

sequence may be very complicated. The task monitor

300 Joint Ada Conference 1987

4-36

records the invoking sequence for each system. The

structure of the task monitor is given in Fig. 5.

The specification part of the task monitor will be

inserted before the main program; therefore, the

monitor can run concurrently with the main program.

The entry has one parameter for receiving signals.

Whenever an entry in a task is invoked, the task
monitor is invoked by a statement inserted at the

beginning of the original task entry. This statement

passes the name of this entry to the monitor.

generic
unit_name : string;
size : natural;

package initiate record is

type table_type is record
information : property_list;
serial_no: natural;

end record;

type table is array I1..size] of table_type;

type record_type is record

name : string :_ unit_name;
namenotable : table;

end record;

end initiate_record;

Fig.4 Generic Table

task taskmonitor is

entry signal(name, of t he_calling_procedure)
end taskmonitor;

task body taskmonitor is
..o

begin

accept signal(name) do
..o

end signal;

-- put the name in a list

.o.

end task monitor;

Fig. 5 Structure of Task Monitor

I
l

I

I
I

I

I
I

I
I

I
I
I

I
I

I
I

t

!

I

1

I
I
I

I
I
I

I
I

I
l

I
I
i

1

II

Probes

The probes for recording non-task activity consist
of a call to the increment procedure in the appropriate
probe monitor _d code to eMure that the call is made

only once. As already "discussed, the probes are inserted
before or after the com°ponsnts to be measured and may
contain code which determines whether the event being
monitored actually occurred.

A structure coverage tool which collects a full range
of Ads related me_ures is currently being constructed
as part of the TAME project. The tool will implement
the instrumenting concepts described in this paper and
will be used to explore the impact of Ada on testing
strategies.

GQI_GI,U_.SlO._

We have discussed the impact that a language such
as Ada has upon the traditional measures used for
evaluating test effectivenem. In particular, we have
drawn attention to the impact of Ada's system

partitioning facilities, and its generic capabilities, and
suggested new measures which recognize them explicitly.

We have propped that some individual language
features be counted explicitly during testing. The
particular features differ significantly from those
traditionally measured. Previously, ensuring that all
statements and components were executed would be a

reasonable goal. Applying those same criteria to Ada

programs without explicitly considering these new
features might lead to unjustified confidence in the
results of some testing processes. A failure to
distinguish between particular instantiations of generic
units is a case in point.

We have also suggested that coverage measures
may also be useful in determining a system's dynamic
characteristics and as an indicator of its complexity.

Our future work will include a further investigation
of these concepts.

ACKNOWLEDGEMENTS

The authors wish to acknowledge discussions with
a number of TAME project members and faculty in the
Department of Computer Science at the University of
Maryland. John Gannon and Mark Weiser acted as

sounding boards and sources of information, and
Elizabeth Katz and Dieter Rombach, assisted in

clarifying a number of aspects of Ada's semantics.

We are particularly indebted to Ms. Katz who read
several early drafts and assisted in constructing some
test cases. Her amistance was invaluable and enabled

the paper to be completed on schedule.

We thank them for their help, however, we must

accept the responsibility for the opinions expressed
herein, which are our own unless otherwise stated.

I. V.R. Basiii, E. E. Katz, IN. M. Panililo-Yap, C.
Loggia Ramsey and, "Examining the Modularity of
Ads Programs," IEEE Compzt¢r VoL 18 No.
9 pp. 53-6,5 (Sep. 1985).

2. V_R. Basili and E.E. Katz, "METRICS OF
INTEREST IN ADA DEVELOPMENT," IEE.CS
WORKSHOP ON SOFTWARE ENGINEERING

TECHNOLOGY TRANSFER, pp. 22-29 IEE
COMPUTER SOCIETY PRESS, (1983).

3. V.R. Basiliand J. Ramsey, "StructuralCoverage
of Functional Testing," Computer Science

Technical Report Series TR-1442"
Department of Computer Science. University
of Maryland, (Sept. 1984).

4. V.R. Ba.sili and D.M. Weiss, "A Methodology for

Collecting Valid Software Enginering Data," IEEE
Trans. on Software Eng. Vol. SE-10 No. 6 pp.
728-738 (Nov. 1984).

5. V.R. B_ili, "Quantatatlve Evaluation of Software
Methodology," Proc. First Pan Pacific Computer

Conference, Australian Computer Society, (Sep.
19s5).

6. V.R. Basili and H. D. Rombach, "Tailoring the
Software Process to Project Goals and

Environments," TR-17_8, Department of Computer
Science, University of Maryland, (Nov. 1986). To
appear in the Proc. of the Ninth International
Conference on Software Engineering,
Monterey,USA March-April 1987

7. V. R. B_Ui and H. D. Romhach, "TAME:
TAILORING AN ADA ME UREMENT
ENVIRONMENT," Proc. of the Joint Ada

Conference, (March 16-19 1987).

8. V. R. Basili and E. E. Katz, "Examining the
Modularity of Ada Programs," Proc. of the Joint

Ada Conference, (March 16-19, 1987).

9. J.R. Brown and R. H. Hoffman, "Evaluating the
Effectivenessof Software Verification-Practical

Experience W]th an Automated Tool," FJCC

AFIPS Conf. Proc. 3/'ol. 41, Part I pp. 181-190

(1972).

I0. S.D. Conte H.E. Dunsmore and V.Y. Shen,
SOFTWARE ENGINERING METRICS AND

MODELS, The Benjamin/Cummings Publishing
Company, Inc, Menlo Park, Cal. 94025 (1986).

Joint Ada Conference 1987 301

4-37

11. • US DoD, "REFERENCE MANUAL FOR THE Ado

• PROGRAMMING LANGUAGE," ANSI/MIL-

STD-1815-1988, United State, Department Of

Defence, (Feb 17 1983).

12. K. Fujlno, "Software Development for Computers

and Communications at NEC," IEEE Computer

Vol.17 No. 11 pp. 57-67 (Nov. 1984).

13. W. Harrison K. Magel R. Kluczny and A. DeKock,

"Aying Software Complexity metrics to Program

Maintenance," IEEE Computer Yoi. 15 No. 9 pp.

65-79 rEEE Computer Society, (Sep. 1982).

14. W. E. Howden, "A Survey of Dynamic Analysis

Methods," IEEE Tutorial : Software Testing amd

Validation Techniques, pp. 209-231 IEEE

Computer Society Press

15. T. McCabe, "A Complexity Measure," IEEE

Trans. Software Eng. Vol. SF_,-2 pp. 308-320 (Dec.

1978).

16. E. Miller, "Introduction to Software Testing

Technology," In Tutorial. Software Testing 81

Validation (E. Miller and W. E. Howden, eds.} 2nd

Edition pp. 4-16 IEEE Computer Society, (1981).

17. Y. Mizuno, "Software Quality Improvement,"

IEEE Computer Vol. 16 No. 3 pp. 66-72 (Mar.
1983).

18. J. Ramsey and V. R. Basili, "ANALYZING THE

TEST PROCESS USING STRUCTURAL

COVERAGE," Proc. 8th International Conference

on Software Engineering, pp. 306-311 (August 28-

30, 1085).

19. S. Rapp. and E. J. Weyuker, Computer

Science Department Technical Report Report No.

23 Department of Computer Science Courant

Institute of Mathematical Sciences New York

University, (Dec. 1981).

302 Joint Ada Conference 1987

4-38

20. Jean E. Sammet, '%Vhy Ado Is Not Just Another

Programming Language," Communication o/ the

ACMvol. 29 , no. 8 p. 722 (Aug. 1986).

21. L. G. Stucki, "A Prototype Automatic Testing

Tool," FJCC AFIPS Conf. Proc. Vol. 41, Part

IT pp. 829-836 (1972).

22. L. G. Stucki, "NEW DIRECTIONS IN

AUTOMATED TOOLS FOR IMPROVING

SOFTWARE QUALITY," Current Trend_ in

Programming Methodolgy, VoI.H R. T. Yeh (ed.),

pp. 80-111 Prentice-Hall, Inc., (1977). 2nd ed.
IEEE Computer Society Press"" also in

"TUTORIAL: Software Testing & Validation" 2ad

ed. IEEE Computer Society Press

23. D. Tsjima and T. Matsubara, "The Computer

Software Industry In Japan," IEEE Computer Vol.

14 No. 5 pp. 89-96 (May 1981).

24. M. Weiser, "Program Slicing," IEEE Trans. of

Software Engineering Vol. SE-IO, No. 4 pp. 352-

357 (Jul. 1984).

25. M. D. Weiser J. D. Gannon P.R. McMullin,

"Comparison of Structural Test Coverage Metrics,"

IEEE Software Vol. 2 , No. 2 pp. 80-85 (Mar.

10s5).
26. M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon and

V. R. Basili, "Software Engineering Practices in the

U.S. and Japan," IEEE Computer Vol. 17 No.

B pp. 57-66 (Jun. 1985).

I

I
I

I
i

I
I

I
I

I
I

I

I

I

I

I

i

I

I

I

I

I

I

I
i

l
l

Biographies

Liqun Wu is a graduate research assistant in

Computer Science Dept., University of Maryland. Her

research interest is in Software Engineering. She

received her B.S. degree from the Computer Science

Dept., Xian Jiaotong University, China in 1982.

Dept. Computer Science

University of Maryland

College Park,MD 20742

(301) 4S4-61S4

Victor R. Ba._ili's biography and picture are

included with the paper "TAME: Tailoring an Ada

Measurement Environment" by V. R. Basili and H. D.

Rombach in these proceedings.

Karl Reed is a Visiting Faculty Research

Associate in the Department of Computer Science at the

University of Maryland , College park. He is currently

on leave from the Department of Computing at the

Royal .Melbourne Institute of Technology where he is

Senior Lecturer and Area Lee_ier for Software

Enginering. He received an Assoc. Diploma in

Communications Engineering from the Royal Melbourne

Institute of Technology in 1965, and an MSc in

Computer Science from Monash University in 1984.

Reed has 22 years experience in the computer industry,

having worked at Elliott Bros., ICIANZ, Monash

University and L.M. Ericsson.

Reed was a research engineer with L. M Ericsson

Aust. from 1973 to 1976, and has research interests in

computer architecture, software engineering, linking

loaders, charging algorithms and technology policy. He

is currently National Chairman of the Australian

Computer Society Software Industry Committee, and

was made a Fellow of the ACS for his contribution to

the development of the Australian Software Industry.

Mr. Reed has served as Stream Chairman for

Software Engineering at the First Pan Pacific Computer

Conference in Melbourne during 1985, and is a member

of the program Committee for IEEE Compsac 1987. He

is a member of the IEEE Computer Society, the

Association for Computing Machinery and the

Institution of Engineers Australia.

I
Mr. _eed's address:

I Dept. ComputingRoyal Melbourne Institute of Technology

Melbourne, Vlc. 3000

Australia

I (03) 862-0611

I

I

!

I

! Joint Ada Conference 1987 303

I
4-39

LESSONS LEARNED IN USE OF

- ADA_M-ORIENTED DESIGN METHODS

Carolyn E. Brophy +, W. W. Agresti* and \qctor R. Basili +

+ Dept. of Computer Sciences

University of Maryland

College Park, Maryland 20742

Abstract

A.s Ada is introduced into new environments, both

managers and developers need to understand the ways

in which the decision to use Ads as the target language

will affect the software development lifecycle. The

Flight Dynamics division at NASA Goddard Space

Flight Center is involved in a study analyzing the effects

of Ads on the development of their software. This pro-

ject is one of the first to use Ada in this environment.

In the study, two teams are each developing satellite

simulators from the same specifications, one in Ads and

one in FORTRAN, the standard language in this

environment. This paper will address the lessons learned

during the design phase including the effect of

specifications on Ads-oriented design, the importance of

the design method chosen, the importance of the docu-

mentation style for the chosen design method, and the

effects of Ads-oriented design on the software develop-

ment lifecycle. It is hoped that the issues faced in this

project will show more clearly what may be expected in

designing with Ads-oriented design methods.

Introduction and Experiment

As Ads is introduced into new environments, the

need arises for both managers and developers to under-

stand the ways in which the decision to use Ada as the

target language will affect the software development

cycle. This becomes an especially important issue for

NASA, who is planning to use Ads for its space station

project. In doing this, NASA needs to understand the

effects of Ads on their traditional software development
approach.

The experiment in progress is being conducted by

the Software Engineering Laboratory {SEL) of the

National Aeronautics and Space Administration's God-

dard Space Flight Center (NASA/GSFC).

NASA/GSFC and Computer Sciences Corporation

Ads is a trademark of the U_. Department of Defense - Ada Joint
Proiprsm OIGce.

Contact: Carolyn Brophy, Dept. of Computer Science, University of
Maryland, College Park, MI) 20742,(301)454-6154.

Support for this research provided by NASA grant NSG-5123 to the
University of Maryland.

* Computer Sciences Corporation

System Sciences Division

8728 Colesville Road

Silver Spring, Maryland 20010

(CSC) are cosponsors of the experiment, which is sup-

ported by personnel from all three SEL participating

organizations (NASA/GSFC, CSC, and University of

MarylancI) [Agresti et al. 86[.

The basic goals of the whole study [McGarry &

Nelson 85] are to

(1) characterize the development process with Ads,
and

(2) determine the impact the use of Ads will have

on reusability, reliability, maintainability, pro-

ductivity, and portability.

Two teams are each developing a Gamma Ray

Observatory (GRO) satellite dynamics simulator from

the same specifications. One team is using FORTRAN,

as usual, as the target language. The other team is

using Ads. The purpose of the GRO dynamics simula-

tor is to test and evaluate GRO flight software under

conditions that simulate the expected in-flight environ-

ment as closely as possible [Agresti et al. 86].

Both teams began in January, 1085. The Ads team

however, had a three or four month training period

before beginning development. The software develop-

meat lifecycle as it applies to this project is shown ia

Figure 1 [Agresti 86], [McGarry, Page et al. 83].

The Ads team is now in the midst of the imple-

mentation phase. The FORTRAN team's simulator is

almost ready to enter production use.

Ads can be viewed in two ways. We can look at it

as a programming language only, or we may view it as

an orientation toward a new approach to problem solv-

ing. In the former context, the changes only affect the

phases from coding on. /us a new approach to problem

solving, all phases of the software development cycle are

affected, beginning with the specifications. A previous

study [Basill et al. 851 showed that developing an Ada

product from a set of specifications that were written

knowing that FORTRAN would be the implementation

language lends itself to a FORTRAN-style design.

Changing to Ads in this latter case requires a break

from the mechanisms of the past.

In giving up their traditional language, FORTRAN,

NASA is giving up a legacy of reusability. This reuse

exists in their specifications, design, and code. So it is

hoped that with the adoption of Ads they will gain

something. For example, can Ada provide a new and

I

I

I

I

I

I
1

I

I
I

I

L

I

I

I

1
i

Joint Ads Conference 1987 231

4-40

I

I

I

I

I

I
I

I

I
I

I
I

I
I
l

l
l

l
l

better legacy of reusability, not only as a programming

language, but also as a design methodology with its

appropriate set of documents and orientation? We are

interested in |earning what are the advants4Les and

disadvants_es of an Ada development and maintenance

orientation. So we hg.ve embarked upon a study which

threw away the old FORTRAN legacy, and with it, the

reuse leverage of the past.

Questions we are attempting to answer itl this

study include: How might the requirements be

represented so as to avoid the FORTRAN legacy?

What is the appropriate design technique, knowing that

the implementation language will be Adaf What design

method is appropriate for the specific application, and

can it be scaled up to the problem size? Is it teachable

and usable by the existing staff?. What kind of training

is needed? Can it be documented? What are the mile-

stones needed for an Ads development?

Because of the nature of this experiment, we have a

clean start, rewriting the specifications, refining and

adapting a new design approach, and developing new

forms of documentation. There is a motivation for

innovation that might allow for the development of

better specifications, design, code and documentation

because of the experimental nature of this study. We

want to record the successes and failures, advantages

and disadvantages, and capture them in a lessons

learned document so that future developments can gain

from our experience. The SEL is preparing a document

that will cover the entire lifeeycle with respect to the

lessons learned on this project.

The information for this paper is from a survey

given to the Ada designers after the design was coln-

pleted. The rest of this paper consists of a listof "les-

sons learned", each followed by the Ada team experi-

ences which led to that particular conclusion.

Seven Design Lessons

I. Choose a specification method that does not

constrain design.

Presently in this environment, the specifications the

development team receives are heavily biased toward

FORTRAN. In fact the high level design for the simu-

lators is actually in the specifications document, and has

not changed for several years. Therefore, to really

explore various design methodologies, the Ada team

found they had to rewrite the specifications to remove

the bias toward FORTRAN and the whole FORTRAN

legacy. The specifications were rewritten using the

Composite Specification Model [A[gresti 84].

It was at this point when the highest level of the

design began to take shape. The problem domain lends

itself well to an object oriented view, so problem solving

proceeded along this line.

Team members felt that the resulting specificatlom

were language neutral. The team had not yet had

232 Joint Ada Conference 1987

extensive experience with Ads, and this particular

specification method pre-existed Ads. New

specifications freed the team from the FORTRAN

oriented design bulit into the original specifications.

One person felt that even the new specifications had a

design bias built in. However this one was an object

oriented one, and it was felt that it did not limit

development with Ada.

The team felt that rewriting the specifications

increased their understanding of the problem more than

merely amflyzing the original specifications would have

done. One person said one additional consequence of

rewriting the specifications was that this also prevented

them from postponing some important questions until

implementation, which would have meant major design

changes at that point.

It seems clear that new Ada developments will

require more time up front in the requirements,

specification and design phases. However, this extra

effort should pay off because of the deeper understand-

ing of both the problem and the solution domains. This

yields a higher quality product, better documentation of

these earlier phases, and a cost savings during testing

and maintenance.

2. Choose a method that exploits new Ada
features.

If a methodology does not do this, why use Ada

rather than another language? Thus much of Ada's

benefits stem from packages, tasks, and generics which

are central features distinguishing Ada from most other

languages.

One of the study objectives was to experiment with

various design methodologies. The Ada team did high

level designs with three [Agresti, Brinker, Lo et al. 85].

They used structural decomposition, Cherry's PAMELA

[Cherry 851, and Booch's object oriented design [Booch

83]. They found that structural decomposition did not

encourage use of Ada's unique features at all.

PA_i_k, which was designed for use with embedded

systems, was viewed as too oriented toward concurrency

for this application. Booch's object oriented design

methodology did not provide enough guidelines in its

representations for a project this big. It left too much

up to the designer's judgement.

As a result, the team developed their own object

oriented methodology," which incorporates ideas from

both Cherry's and Booch's methods [Seidewitz 85},

[Stark & Seidewitz 86], [Seidewitz & Stark 86]. The

methodology produces object diagrams as the final

result of object/data flow analysis. Two orthogonal
hierarchies exist:

(1) parent-child hierarchy (object decomposition)

(2) seniority hierarchy (an object using services of

another is senior to the used object).

The new object oriented methodology maps very

well into Ada, as both are developed with modern

4-41

software engineering concepts in mind (e.g., data

abstraction, information hiding). Objects easily convert

to packages, and packages encourage modularity.

One of the successful results from the design is the

modularity. The team "felt this helped make interfaces

easier to design, and increased interface reliability is

expected at t6sting. Another important effect of modu-

larity in the design is the ease of adding new program-

mers to the project and phasing out other programmers

if required.

Another successful point is that the original design

is still being followed in implementation, without major
changes. The changes that have been made are addi-

tions. The team now feels that enough attention was

not givet_ to type specifications during design. However,

it was felt the object diagrams were quite helpful as a

framework for discussing proposed changes.

3. Team needs to know different design methods

to converge on an appropriate design.

Most programmers/designers in this environment

use functional decomposition as their design method.

Part of the training for the Ads team was the use of

other design methodologies. Cherry's PAMELA and

Booch's object oriented design methodologies are radi-

cally different from the standard procedural decomposi-

tion used in this environment. Such exposure was one

source of broader insight into problem solving for the

team. Thus, including various design methodologies in

training, especially the one to be used for that project,

is very important. This is needed to really exploit Ada's

features; it is not enough just to know the language.

An appropriate design both exploits Ada's features

and makes implementation easier. We have already dis-

cussed the first issue. Concerning the second issue, the

team has found that implementation was significantly

promoted by their design. This design in turn was

developed from their design methodology, which owes

much to other methodologies as well.. It was easy for a

programmer to code from the design documents also.

This was true even when the coder was not the designer

for that section of the project. This has an important

benefit in that it permits the build up of staff during the

coding process allowing parallel development. In a pro-

ject with tight schedule and high people resources,

managers may be able to increase the staffing to minim-

ize time.

4. Pay attention to how the design is docu-
mented.

Object diagrams (see Figure 2) are the key type of

documentation produced by, the team's object oriented
methodology. Structure charts are the documentation

produced with the standard FORTRAN design process.

Lack of a specific methodology at the start of the

project was a problem for the team, though unavoidable

in this case because of the objectives of the study, The

representations changed over time as the methodology

developed, which was a big problem, since it made it

difficult to keep the design documents consistent. To

apply a methodology well, everyone needs to know the

ground rules at the start. This facilitates understanding
between developers on the team, as well as between the

team and managers.

The key issue here is the importance of people's

expectations in what they see. Less precision in the

structure charts and FORTRAN presentations at the

Preliminary and Critical Design Reviews has been more

acceptable than would be allowed with Ads documenta-

tion. Since the representations are so different for the

Ads documentation, any unspoken understandings and

intuition is lost.

Managers found they could not understand the

object diagrams at these reviews. They tried to look at

them as though they were the familiar structure charts,

and could not visualize the design. Object diagrams

contain a high levelof detail in order to express all the

relationships they are capable of expressing. If some

type of modification was made to suppress details of

relationships between modules so that some relation-

ships could be shown between a greater number of

modules, the gap between object diagrams and structure

charts would be lessened.

Even so, training is needed to make the object

diagrams familiar to managers and customers. Unfami-

liarityleads to concerns that something isbeing hidden.

The developers get less feedback on the design as well,

when the design is not understood due to the represen-

tation.

One clear implication of this experiment isthe need

for education of the managers and customers in both

Ads and the new concepts of software engineering. An

Ada-oriented development requires a fair amount of

knowledge on the part of the reviewers. There is both

more and different types of information to examine to

validate each of the phases of the lifecycte.

5. Designing with Adx may imply different start-

ing and ending points of the design phase.

The legacy is that the starting point for design is a

specifications document already containing the prelim-

inary design. As we have seen, a preliminary design

oriented toward FORTtL, kN would severely limit an

Ads design because it would not take advantage of

Ada's features. In this case therefore, with the

specifications rewritten, less design existed in the

specifications document. But since some design is there

and this is also unfamiliar, the llne where requirements

analysis of the specifications stops and the design phase

begins seems fuzzy.

The milestones of the design phase may also be

different. In the usual software lifecycle with FOR-

TRAN, it was well accepted what x Preliminary Design

Review (PDR) and Critical Design Review (CDR) are.

The breaks between lifecyclephases seemed [ogicaJ and

real. However there is no direct conversion for Ads,

Joint Ada Conference 1987 233

4-42

I

I
I

I
I

I
I
I

I
I

I

I

I
I
I

I
I
I

I

I

I

l

l

I

l

I

l

I

I

I

l

l

l

l

l

l

I

.......... -*w ok:, *_' o_ented m_*l-^_ol^gy --'=

mentation is so different from the tradition_l ones.

Again, preliminary design seems to lade into detailed

design, and detmled design fades into coding. This

made PDR and CDI_ seem to come at arbitrary times

rather than at logical points in the design process.

The team was divided in how prepared they felt for

PDR and CDR. One team member in particular felt

more prepared for these than usual because he under-

stood the design and its implications so well. Others

felt less prepared than usu_ due to the newness of the

methodology mad representations, and uusureness of

how to map the sta_e of the design into the sorts 0f

things generally expected at PDR and CDR.

One might consider the PDR occurring later than

normal but with more rigor. The PDR could be

represented by high level compilable design elements

and CDRs might be staged for different design elements

by examining more detailed Ada PDL pieces.

6. A.da gives an opportunity for eompilable

design elements

Ada can work well as a compilable program design

language (PDL). The PDL used with FORTRAN is

pseudocode. The advantage of compilable PDL is of

course, that interface checking and type checking may

be done, which helps assure validity of the design in a

way otherwise not possible at this early a stage. To do

this requires more precision in the design process than

the standard FORTRAN design proces now takes.

However it also provides more _surance and confidence

during the PDR and CDR.

7. Coasts money not to remm previous desiEns.

This whole discussion speaks of the real c_t of a

changeover to Ada as being the legacy accompanying

FORTRAN which is lost. This is the c_e when Ada is

viewed not merely as a programming language, but as

including a whole new problem solving "world view'.

This legacy includes old specifications, old design, old

code, intuition, and institutional knowledge which is not

recorded anywhere. The Ada team found itselffacing a

bewildering number of questions needing to be answered

again for Ada, as well as brand new ones, once they

began using this new technology.

Summary

When Ada is designated at the start as the

language of choice, it may influence many aspects of

design. Observation of this project is continuing. As

the study proceeds we will be very interested in seeing if

what is gained makes this lost lesacy worth losing.

234 Joint Ada Conference 1987

4-43

Acknowledgements

The Ads experiment is managed by F. McGarry

and R. Nelson of NASA/GSFC. The authors would like

to thank them and the Ada team for their cooperation

and assistance.

References

[Auesti 84]

Agresti W., "An Approach to Developing

Specification Measures", Proceedings of Ninth

Annual Software Engineering Work, shop, Goddard

Space Flight Center, Greenbelt, MD 20771,

November 1984.

[._restl_]
Agresti W., "Ada Experiment: Lessons Learned

(Training/Requirements Analysis Phase)", Goddard

Space Flight Center, Greenbelt, Nff) 20771, August
I085.

[Agresti 88]

Agresti W., "SEL Ads Experiment: Status and

Design Experiences", Proceedings of Eleventh

Annual Software Engineering Workshop, Goddard

Space Flight Center, Greenbelt, ,Nil) 20771,

December 1986.

[Agresti, Brinker, Lo, et al. 85]

Agresti W., Brinker E., Lo P., et al, "GRO Dynam-

ics Simulator in Ada (GRODY) - Preliminary

Design Report", Goddard Space Flight Center,

Greenbelt, M'D 20771, December 1985.

[Agresti et al. 80]

Agresti W., Church V., Card D., et al, "Designing

with Ada for Satellite Simulation: A. Case Study",

Proceedings of First Annual Symposi*;m on Ada

Applications for the NASA Space Station, Houston,

Texas, June 1986.

[Basili et al. 85]
Basili V.R., Katz E.E., Panlilio-Yap NA4., Ramsey

C.L., and Chang S., "Characterization of a

Software Development in Ada," IEEE Computer,

Vol. 18, No. 9, Sept. 1985, pp. 53-65. September

1085.

[Booch 83]
Booch G., Software Engineering u_th Ada. Menlo

Park, California: Benjamin/Cummings Publishing

Co., Inc., 1983.

[Cherry 85[
Cherry G.W., "Advanced Software Engineering
with Ada -- Process Abstraction Method for

Embedded Large Applications", Language Automa-

tion A._sociate_, Reston, Virginia, 1985.

[McGarry, Page et aL 831
SEL-81-205, "Recommended Approach to Software
Development", McGarry F., Page J., Eslinger S.,

Church V., and Merwarth P., Goddard Space

Flight Center, Greenbelt, MD 20771, Apri] 1983.

[McGarry & Nelson 85]
McGarry F., and Nelson R., "An Experiment with

Ada -- The GRO Dynamics Simulator Project

Plan," Goddard Space Flight Center, Greenbelt,

IV[l) 20771, April 1985.

[Seidewitz 85]

Seidewitz E., "Some Principles in Object-Oriented

Design", Goddard Space Flight Center, Greenbelt,
MD 20771, August 1985.

[Stark & Seidewitz 86}
SEL-85-002, "General Object Oriented Software

Development", Seidewitz E., and Stark M., God-

dard Space Flight Center, Greenbelt, _ 20771,
August 1986.

[Seidewitz & Stark 86]
Seidewitz E., and Stark M., "Toward a General

Object Oriented Software Development Method",

Proceedings of First Annual Symposium on Ada
Applications for the NASA Space Station, Houston,

Texas, June 1986.

[Murphy & Stark 851
SEL-85-002, "Ada Training Evaluation and Recom-
mendations from the Gamma Ray Observatory Ada

Development Team", Murphy R., and Stark M.,
Goddard Space Flight Center, Greenbelt, MD

20771, October 1985.

SCHEDULE*
"EFFORT LEVELS VARY

FORTRAN

TEAM

ADA

TEAM

REQTS.

ANALY.
SiS

I I I SYSTEM j ACCEPTANN_' I

l,°"'°'l-*""*'*'°" I T"* I *"* /

REG • ACC
TRAINING I ANALy- I DESIGN I ,MPtJEMENTATION I "_:.o;

, I,-. t, I _ /"'!

II 1I !I_

Q4

Figure 1. Schedule for the GRO experiment

Joint Ada Conference 1987 235

4-44

I

I

I
I
I

I
I

I
I

I

I
I
I

I
I
I
I

I

!

| ®---

I X
!

Figure 2. Example of an Object Diagram.

Seniority Hierarchy of Packages"

I Biographies

I

!

!

Carolyn E. Brophy is a graAuate research

assistaJat at the University of Maryland, College Park.

Her research interests are in software engineering, and

she is working with the NASA Goddxrd Software

Engineering Laboratory. Ms. Brophy received a B.S.

degree from the University of Pittsburgh in biology

and pharmacy. She is a student member of ACM.

!

!

!

William W. Agresti is with Computer Sciences

Corporation in Silver Spring, Maryland. He supports

the NASA Goddard Software Engineering Laboratory,

where he is currently project leader of the Ada

development team. His research interests are in

software process engineering, and he recently com-

pleted the tutorial text, New Paradigms for Software

Development, for the IEEE Computer Society. He

received the B.S. degree from Case Western Reserve

University, the M.S. and Ph.D. from New York

University.

!

!

Victor R. BasUi's biography and picture are

included with the paper "T._ME: Tailoring an Ada

Measurement Environment" by V. R. Basili and H. D.

Rombach in these proceedings.

I 236 Joint Ada Conference 1987

4-45

I

I
l
I

I
I
I

I

I
I
I

!

I
I
I

I
l
I

I

•-.,, _,,_,-,.n,...., BIBLIOGRAF'HY OF SEL LITERATURE

I

I

I
I

I
I
I
I

I
I

I
I

I
I

I
I

|

I

STANDARD BIBLIOGRKPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Enqi-

neerinq Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software En-
qineerinq Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton

and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Design SPecifications Lanquaqes

Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Enqi-

neerinq Workshop, September 1978

SEL-78-006, GSFC Software Engineerinq Research Requirements

Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleiqh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 3), W. J. Decker and

W. A. Taylor, July 1986

SEL-79-002, The Software _nqineerinq Laboratory: Relation-

ship Euuations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module RePository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-

gram Design Lanquaqe (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Desiqn Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September

1979

B-I

9913

SEL-79-005, Proceedinqs From the Fourth Summer Software En-

qineerinq Workshop, November 1979

SEL-80-002, Multi-Level Expression Desiqn Lanquaqe-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Mul_imission Modular Spacecraft Ground Support

Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedinqs From the Fifth Annual Software Enqi-
neerinq Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Enqineerinq Laboratory Proqrammer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatinq Software Development by Analysis of
Chanqe Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleiqh Curve As a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedinqs From the Sixth Annual Software Enqi-
neerinq Workshop, December 1981

SEL-81-014, Automated Collection of Software Enqineering

Data in the Software Enqineerinq Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Enqineering Laboratory (SEL) Data Base

Orqanization and User's Guide Revision], P. Lo and

D. Wyckoff, July 1983

9913
B-2

I
l
I

I
I

I
I

I
I

I
I

I

I
l
I

I
I

I
I

l

i

I

I

l

I

l

I

I

I

I

l

I

I

I

I

I

I

SEL-8!-I04, The Software Engineerinq Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982
i

SEL-81-106, Software Engineering Laboratory {SEL) Document

Library (DOCLIB) System Description and User's Guide,

W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Enqineering Laboratory (SEL) Compendium

of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Eva!_ation of an Independent Verification and

Validation (IV&V) Methodology for Fliqht Dynamics, G. Page,

F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Enqineering Laboratory (SEL) Data Base

Maintenance System (DBAM) User's Guide and System Descrip-

tion, P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,

F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software

D_veloDment, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-003, Software Engineering Laboratory (SEL) Data Base

Reportinq Software User's Guide and System Description,

P. Lo, August 1983

SEL-82-004, Collected Software Enqineerinq Papers:

ume I, July 1982

Vol-

SEL-82-007, Proceedinqs From the Seventh Annual Software

Engineerinq Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of

Changes: The Data From the Software Engineerinq Laboratory,

V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program

(SAP) System Description (Revision i), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-I05, Glossary of Software Enqineering Laboratory

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

9913

B-3

SEL-82-406, Annotated Biblioqraphy of Software Engineering

Laboratory Literature, D. N. Card, Q. L. Jordan, and

F. E. McGarry, November 1986

SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Enqineering Papers:
_me II, November 1983

Vo I-

SEL-83-006, Monitoring Software Development Throuqh Dynamic

Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eiqhth Annual Software En-

qineerinq Workshop, November 1983

SEL-84-001, Manaqer's Handbook for Software Development,

W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, ¢onfiquration Manaqement and Control: Policies

and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investiqation of Specification Measures for the

Software Engineering Laboratory (SEL), W. W. Agresti,

V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedinqs From the Ninth Annual Software Enqi-
neerinq Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-

niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,

April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From

the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Enqineerinq Papers:
Volume III, November 1985

SEL-85-004, Evaluations of Software Technoloqies: TestingL

CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,

C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software

Enqineering Workshop, December 1985

9913

B-4

I
I

!
I

I
I
I

i
I

I
I

I

I
I
I

I
I

I
I

!

I
I

!

I
I

I
I

I
i

l
I

I
I

I
i
I

SEL-86-001, Prourammer'__ _ wanaho_k--_..___.for _=_ight_ Dynamics Soft-

ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,

E. Seidewitz and M. Stark, August 1986

SEL-86-003, Fliaht Dynamics System Software Development En-

vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enaineerinu Papers:

Volume IV, November 1986

SEL-86-005, Measurinu Software Desiun, D. N. Card, October
1986

SEL-86-006, Proceedinqs From the Eleventh Annual Software

Engineerinq WorkGh0p, December 1986

SEL_87-001, Product Assurance Policies and Procedures for

Flight Dynamics Software Development, S. Perry et al., March
1987

SEL-87-002, Ada Style Guide (Version i,i), E. Seidewitz

et al., May 1987

SEL-87-003, Guidelines for ADDIvinu the Composite

Specification Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessinq the Ada Desiqn Process and Its Impli-

cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-005, Flight Dynamics Analysis System (FDAS) Build

User's Guide, S. Chang et al., October 1987

SEL-87-006, Flight Dynamics Analysis System (FDA$) Build 3

System Description, S. Chang, October 1987

SEL-87-007, Application Software Under the Flight Dynamics

Analysis System (FDAS) Build 3, S. Chang et al., October 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL

Database, G. Heller, October 1987

SEL-87-009, Collected Software Enuineering Papers:

Volume V, S. DeLong, November 1987

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the

Software Enqineerinq Laboratory, Computer Sciences Corpora-

tion, CSC/TM-84/6085, June 1984

9913

B-5

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedings of the First International Symposium on Ada for
the NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Program Transformation and Pro-

gramminq Environments. New York: Springer-Verlag, 1984

iBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Engineering.

New York: IEEE Computer Society press, 1981

iBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in Commuter Technology,
January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software

Manaq@ment and Enqineering. New York: IEEE Computer

Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software

Methodology," Proceedings of the First Pan-Pacific Computer
Conference, September 1985

IBasili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-

lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

iBasili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-

ships Between Effort and Other Variables in the SEL," Pro-

ceedinqs of the International Computer Software and Applica-
tions Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and

Complexity: An Empirical Investigation," Communications of

the ACM, January 1984, vol. 27, no. 1

iBasili, V. R., and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Laboratory,"

Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
ity Metrics, March 1981

B-6
9913

I
I
l

I
I

I
I

I
I

I
I

I
I
I

I
I

I
I

I

/I

i

l

a

i
II
!1

I

i
I
l

I
I

II
II

_Basil=- _, V. R., and C. •L. Ramsey, "ARROWSMITH-P--A Proto-

type Expert System for Software Engineering Management,"

Proceedings of the IEEE/MITRE Expert Systems in Government

SympQsium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Pr0¢eedinqs of the Workshop

on Quantitative Software Models for Reliability, Complexity,

and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. and H. D. Rombach, "Tailoring the Software

Process to Project Goals and Environments," Proceedings of

the 9th International Conference on Software Engineering,
March 1987

5Basili, V. and H. D. Rombach, "T A M E: Tailoring an Ada

Measurement Environment," Proceedings of the Joint Ada Con-

ference, March 1987

5Basili, V. and H. D. Rombach, "T A M E: Integrating

Measurement Into Software Environments," University of

Maryland, Technical Report TR-1764, June 1987

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-

ysis and Data Validation Across FORTRAN Projects," IEE_

Transactions on Software Enqineerinq, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use

of an Environments's Characteristic Software Metric Set,"

Proceedings of the Eighth International Conference on Soft-

ware Enqineerinq. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-

ness of Software Testing Strategies, University of Maryland,

Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," IEEE Transactions on

Software Enqineerina, July 1986

5Basili, V. and R. Selby, "Comparing the Effectiveness of

Software Testing Strategies," IEEE Transactions on Software

Engineering (in press)

2Basili, V. R., and D. M. Weiss, A Methodology for Col-

lecting Valid Software Engineering Data, University of

Maryland, Technical Report TR-1235, December 1982

9913

B-7

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," IEEE Transactions on

Software Engineering, November 1984

iBasili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedings of the

Fifteenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedinqs of the Software Life

Cycle Manaqement Workshop, September 1977

iBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware Engineering LaboratorY," Proceedinqs of the Second Soft-
ware Life Cycle Manaqement Workshop, August 1978

iBasili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment," Com-

puters and Structures, August 1978, vol. I0

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedinqs of the Third Interna-

tional Conference on Software Engineering. New York: IEEE

Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned

in Use of Ada-Oriented Design Methods," Proceedinqs of the
Joint Ada Conference, March 1987

3Card, D. N., "A Software Technology Evaluation Program,"

Annais do XVIII Conqresso Nacional de Informatica, October
1985

5Card, D. and W. Agresti, "Resolving the Software Science

Anomaly," The Journal of Systems and Software, 1987

4Card, D., N., V. E. Church, and W. W. Agresti, "An Em-

pirical Study of Software Design Practices," IEEE Trans-

actions on Software Engineering, February 1986

5Card, D., F. McGarry, and G. Page, "Evaluating Software

Engineering Technologies," IEEE Transactions on Software

Enaineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for

Software Modularization," Proceedinqs of the Eighth Interna-

tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1985

9913

B-8

!

!

I

I

I
I
I
I

I

I
I
I

I
I

I
I

I
I
I

I

I

I

I

I

I

iChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceed-

inqs of the Fifth International Conference on Software

Engin_erinq. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and

Q. L. Jordan, "An Approach for Assessing Software Proto-

types," ACM Software Engineerinq Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," ProceedinQs of the

Seventh International Computer Software and Applications

Cqnf@rence. New York: IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer

Program," University of Maryland, Technical Report TR-1895,

August 1987 (NOTE: i00 pages long)

I

I
I

I
I

Hamilton, M., and S. Zeldin, A Demonstration of AXES for

NAVPAK, Higher Order Software, Inc., TR-9, September 1977

(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource

Data: A Model for Logical Association of Software Data,"

University of Maryland, Technical Report TR-1848, May 1987

5Mark, L. and H. D. Rombach, "A Meta Information Base for

Software Engineering," University of Maryland, Technical

Report TR-1765, July 1987

5McGarry, F. and W. Agresti, "Measuring Ada for Software

Development in the Software Engineering Laboratory (SEL),"
Proceedinqs of the 21st Annual Hawaii International Con-

ference on System Sciences, January 1988

I 3McGarry, F. E., J. Valett, and D. Hall, "Measuring theImpact of Computer Resource Quality on the Software Develop-

ment Process and Product," Proceedings of the Hawaiian Inter-

I national Conference on S_stem Sciences, January 1985
3page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-

perience With Independent Verification and Validation,"

I Proceedings of the Eiqhth International Computer Software
and APPlications Conference, November 1984

5Ramsey, C. and V. R. Basili, "An Evaluation of Expert Sys-

tems for Software Engineering Management," University of

Maryland, Technical Report TR-1708, September 1986

9913

B-9

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedings of the Eighth Inter-
national Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of

Software Structure on Maintainability," IEEE Transactions on

Software Enaineerinq, March 1987

5Seidewitz, E. "General Object-Oriented Software Develop-

ment: Background and Experience," Proceedings of the 21st

Hawaii International Conference on System Sciences, January
1988

4Seidewitz, E., and M. Stark, "Towards a General Object-

Oriented Software Development Methodology," Proceedinqs of

the First International Symposium on Ada for the NASA Space
Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-

Oriented Ada Lifecycle," Proceedings of the Joint Ada
Conference, March 1987

Turner, C., and G. Caron, A Comparison of RADC and NASA/SET.

Software Development Data, Data and Analysis Center for

Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

5Valett, J. and F. McGarry, "A Summary of Software Measure-

ment Experiences in the Software Engineering Laboratory,"
Proceedinqs of the 21st Annual Hawaii International Confer-

ence on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IEEE Transactions on Software

Engineering, February 1985

5WU, L., V. Basili, and K. Reed, "A Structure Coverage

Tool for Ada Software Systems," Proceedings of the Joint Ada
Conference, March 1987

iZelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects," Proceedings of the Twelfth Conference on

the Interface of Statistics and Computer Science.

New York: IEEE Computer Society Press, 1979

9913
B-10

I
I

I
I

I
I
I

I
I

I
I

I

I
I
I

I
I
I
I

m

i

I

I

I
I
I

I

I
I

I
I

I
I
I

I
I

I
I

27_I_._,_. M. V., "Data Collection and Evaluation for Ex-

perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings),
November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedinqs of the Soft-

ware Life Cycle Management Workshop, September 1977

NOTES-.

iThis article also appears in SEL-82-004, Collected Soft-

war_ Engineering Papers: Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Soft-

ware Engineering Papers: Volume IT, November 1983.

3This article also appears in SEL-85-003, Collected Soft-

ware Enqineering Papers: Volume III, N_vember 1985.

4This article also appears in SEL-86-004, Collected Soft-
ware EnaineerinQ PaPers: V01um_ IV, November 1986.

5This article also appears in SEL-87-009, Collected Soft-

ware Enqin_rinq Papers: Volume V, November 1987.

9913
B-II

